首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submarine groundwater discharge (SGD) is now recognized as an important source of nutrients and freshwater to some coastal environments. We studied a shallow coastal lagoon (Little Lagoon, AL, USA) in the northern Gulf of Mexico that lacks riverine inputs but has been suspected to receive significant SGD. We observed persistent salinity gradients between the east and west ends of the lagoon and the pass connecting it to the Gulf of Mexico. Covariance between salinity in the lagoon and the groundwater tracer 222Rn indicated that SGD was responsible for the salinity gradients and is the primary source of freshwater to the lagoon. Cluster analysis of 246 biweekly samples based on temperature, salinity, and two proxies of SGD revealed two hydrographic regimes with different drivers for nutrient inputs. In samples characterized by high discharge and low temperatures (generally December–April), total nitrogen (TN) was negatively correlated with salinity, while total phosphorus (TP) was positively correlated with temperature. Total nitrogen in the groundwater was very high (0.36–4.80 mM) while total phosphorus was relatively low (0.3–2.3 μM), consistent with SGD as the source of TN during the high-discharge periods. In periods with low discharge and higher temperatures (approx. May–November), TN and TP had strong positive correlations with temperature and are inferred to originate from benthic efflux. Seasonal changes in nutrient stoichiometry in the lagoon water column also indicate an alternation between low TN/TP sediments and high TN/TP groundwater as the primary sources of nitrogen in this system.  相似文献   

2.
The variability in salinity and temperature in the southwest lagoon of New Caledonia (2100 km2) under non-storm conditions is analysed using a 4-year dataset (1997–2001). Seasonal and interannual variations in salinity are amplified nearshore. Temperature is larger in bays than in the open lagoon during summer, the reverse is true in winter. El Niño Southern Oscillation (ENSO) related nearshore temperature variations parallel those at regional scale, but with seasonal variations amplified. Haline stratification, if any, is enhanced in coastal areas. To cite this article: S. Ouillon et al., C. R. Geoscience 337 (2005).  相似文献   

3.
Species of submerged aquatic vegetation (SAV) are frequently used in the management of estuarine systems to set restoration goals, nutrient load reduction goals, and water quality targets. As human need for water increases, the amount of freshwater required by estuaries has become an increasingly important issue. While the, science of establishing the freshwater needs of estuaries is not well developed, recent attempts have emphasized the freshwater requirements of fisheries. We evaluate the hypothesis that SAV can be used to establish freshwater inflow needs. Salinity tolerance data from laboratory and field studies of SAV in the Caloosahatchee estuary, Florida, are used to estimate a minimum flow required to maintain the salt-tolerant freshwater species,Vallisneria americana, at the head of the estuary and a maximum flow required to prevent mortality, of the marine speciesHalodule wrightii at its mouth. ForV. americana, laboratory experiments showed that little or no growth occurred between 10‰ and 15‰ In the field, lower shoot densities (<400 shoots m?2) were associated with salinities greater than 10‰. Results forH. wrightii were more variable than forV. americana. Laboratory experiments indicated that mortality could occur at salinities <6‰, with little growth occurring between 6‰ and 12‰. Field data indicated that higher blade densities (>600 blades m?2) tend to occur at salinities greater than 12‰ Relationships between salinity in the estuary and discharge from the Caloosahatchee River indicated that flows>8.5 m3 s?1 would produce tolerable salinity (<10‰) forV. americana and flows<89 m3 s?1 would avoid lethal salinities (<6‰) forH. wrightii.  相似文献   

4.
Monthly growth of the fouling community at eight test panel sites in the Loxahatchee River Estuary was related to salinity and temperature. Growth was lowest in January 1981 (averaging 23 g per m2, dry weight), and increased during spring and early summer with increasing water temperature. Maximum growth occurred during early or midsummer at upstream locations, before river or canal discharge substantially reduced salinity, and in late summer at downstream locations. Growth was greatest at salinities slightly less than that of seawater and decreased at salinities less than about 10‰. Growth was suppressed throughout the estuary in August 1981, probably because of the sudden decrease in temperature and salinity, and perhaps the increase in physical scouring, caused by runoff from Tropical Storm Dennis. Large loads of nutrients transported to the estuary from storm runoff, however, may have subsequently stimulated growth, which increased in September 1981 to the maximum for the year (averaging 683 g per m2, dry weight).  相似文献   

5.
Holocene evolution of a coastal lagoon, Lake of Tunis, Tunisia   总被引:1,自引:0,他引:1  
Historical records demonstrate that the Lake of Tunis, Tunisia, was an open bay that became separated from the Mediterranean by an accreting barrier spit, forming a lagoon. Closure of the lagoon was caused by increased sedimentation as a consequence of Roman deforestation of the Medjerda River drainage basin to the north and subsequent accelerated longshore transport. The separation of the lagoon from the Mediterranean was completed in the early 1500s. At present, the 48 km2 lagoon averages less than 1 m in depth and reaches eutrophic conditions in the late summer. Consistent with the historical records, the lagoon sedimentary column shows three distinct successive environments of deposition: (1) an arid continental environment; (2) an open marine bay; and (3) the present brackish to hypersaline lagoon. These depositional environments are represented by the lower grey layer, which is less than 0-5 m thick, the middle olive-grey layer, which varies from 1 to 5 m in thickness, and the upper black layer, which is 1 m thick. All of the strata are predominantly silt plus clay, but usually contain at least 10% sand. The lower grey layer consists of pitted quartz sand, with very few abraded, broken molluscan fragments and benthic foraminifera with thick tests. An arid, subaerial depositional environment of latest Pleistocene time best explains these sediment and fossil assemblages. In the middle olive-grey layer, coral, coralline algae, open marine graeses and the dominance of foraminifera over ostracods (expressed as a low percentage of ostracods/ostracods plus foraminifera) attest to a depositional environment of an open marine bay. A sharp increase in the percentage of ostracods/ostracods plus foraminifera and organic carbon from the middle olive-grey layer to the upper black layer signifies a major change in depositional environment. The predominance of ostracods over foraminifera, abundance of gastropods characteristic of eutrophic conditions, high organic carbon content and absence of macro-fossils characteristic of open marine conditions clearly indicate that the upper black layer was deposited in a brackish to hypersaline, eutrophic lagoon which has persisted to the present. Seismic records indicate a karstic bedrock surface underlying the lagoon. The surface is marked by considerable relief, and shows a linear depression which may represent an early sixteenth century ship canal. Heavy metal analyses of total samples in five cores demonstrate that Mn and Fe vary randomly, and are apparently derived from natural sources only. Cd, Cr, Pb, Cu and Zn are typically highest in the uppermost unit, which reflects levels of human contamination since closure of the lagoon.  相似文献   

6.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

7.
Measurement of the electric potential produced across a tidal stream is an inexpensive and relatively maintenance free means of monitoring volume flow. Comparison of the electric signal to transports determined from current meter records is used to calibrate the system. A volume flow of 100 m3 per sec will induce a potential near 1 mV. Salinity and temperature changes at the electrodes will induce potentials of 500 μV per ‰ and 350 μV per °C. Transport estimates may need to be corrected for such effects. Examples of measurements made at two locations, Great Bay, New Hampshire, and Lake Pontchartrain, Louisiana, illustrate that the method is capable of yielding volume flow measurements with an uncertainty of about 15%.  相似文献   

8.
Lake Pontchartrain is a large, shallow, low salinity estuary north of New Orleans, Louisiana. It is a water quality impaired system with restoration efforts in progress. One restoration goal is the reestablishment of historic submersed aquatic vegetation (SAV;Vallisneria americana Michx. andRuppia maritima L.), which has been in a state of decline since first studied in 1953. Annual SAV surveys and monthly water quality monitoring were conducted at four to five sites from 1996 through 2003 to evaluate trends and determine the causes of SAV change. We found a rapid increase in the distribution and abundance ofR. maritima in 1999 that persisted through 2002. An El Niño Southern Oscillation shift occurred between 1997 and 2001, which produced a drought in southern Louisiana as an ancillary effect of La Niña. This study was conducted to investigate causal links between the El Niño to La Niña climate phase shift and SAV change. We found that salinity and water clarity increased during La Niña. Increased water clarity produced a rapid increase in the euryhaline speciesR. maritima in deeper water and at historic sites where SAV had not been found since 1953. As salinity increased, the freshwater speciesV. americana andMyriophyllum spicatum L. declined, andNajas guadalupensis (Spreng.) Magnus andPotamogeton perfoliatus L. disappeared. In 2003, after the La Niña phase, salinity and water clarity decreased,R. maritima decreased, and the freshwater species increased, butP. perfoliatus was still absent. We found that salinity controlled SAV species composition, and water clarity controlled SAV colonization depth (Zcol=2.3/Kd). Our study demonstrated that climatic shifts cause cyclic changes in Lake Pontchartrain SAV and that restoration could be accomplished by improving water clarity. Due to the sensitivity of SAV to environmental change, similar responses to short-term and long-term climate changes should occur in other estuarine systems.  相似文献   

9.
Oxygen isotopes and strontium concentrations were used as geochemical tracers to discern the sources of water to Celestún Lagoon, a small subtropical estuary on the western side of the Yucatán Peninsula of Mexico. Celestún Lagoon is underlain by karstified limestone with numerous locations where groundwater is observed discharging directly to the lagoon. In this study, samples of groundwater, lagoon surface water, and seawater (SW) were collected in April 2008 and June 2009 and analyzed for salinity, stable isotopes of oxygen, and strontium (Sr2+) concentrations. These geochemical tracers were used in two tertiary mixing models to calculate the relative ratio inputs of fresh groundwater, brackish groundwater, and SW to the lagoon. Two sources of groundwater were found to contribute to the surface water in the lagoon; one fresh and the other brackish with an average salinity of 19 psu. The fresh groundwater had an oxygen isotopic signature (δ18O) and strontium concentration (Sr2+) of δ18O?=?-3.30‰ and Sr2+?=?0.03 mmol/l, respectively. The brackish groundwater observed in the northern end of the lagoon add a dissimilar oxygen isotopic signature and Sr2+ concentration of δ18O?=?3.01‰ and Sr2+?=?0.12 mmol/l, respectively. Local SW had an isotopic oxygen signature and Sr2+ concentration between the two fresher sources (δ18O?=?1.40‰, Sr2+?=?0.09 mmol/l). The lagoonwide results of the two tracer mixing models (δ18O and Sr2+) agreed well (within 5 %) and indicated a ratio of brackish groundwater–fresh groundwater– SW of 31 %–26 %–43 % (±5 %) for the Sr2+ model and 35 %–25 %–40 % (± 5 %) for the δ18O model. Brackish groundwater is dominant in the northern portion of the lagoon, while SW dominates the southern portion. Fresh groundwater discharge is a significant contributor of water along the entire eastern boundary of the lagoon where mangrove forests are the dominant vegetation.  相似文献   

10.
The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg−1. The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20°C and 1 atm Lake Issyk-Kul water is about 530 g m−3 denser than seawater at the same salinity. The temperature of maximum density at 1 atm is about 0.15°C lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an ∼15 m thick nepheloid layer observed at the bottom of the deep basin.  相似文献   

11.
In southern Florida, a vast network of canals and water control structures mediate freshwater discharge into the coastal zone. Management protocol for one such canal network (C-111) is being modified in part to try to improve habitat for estuarine fish and wading birds in northeastern Florida Bay, an estuarine part of Everglades National Park. Changes in canal management could alter the spatial and temporal salinity regime in the estuary. To better predict the effect of such changes on estuarine habitat, abundances of submersed vegetation and benthic animals were sampled repeatedly at 12 stations that differed in salinity. A variety of other parameters were also measured (nutrients, light, temperature, oxygen, sediment characteristics, and others). Mean salinity among stations ranged from 11.4‰ to 33.1‰. Densities of benthic plants and animals differed among stations by several orders of magnitude. The standard deviation of salinity was the best environmental correlate with mean plant biomass and benthic animal density: less biota occurred at stations with greater fluctuations in salinity. The two stations with the least plant biomass also had the highest mean water temperatures. In a stepwise multiple regression analysis, standard deviation of salinity accounted for 59% of the variation in the logarithm of mean plant biomass among stations. For every 3‰ increase in the standard deviation, total benthic plant biomass decreased by an order of magnitude. Mean water temperature accounted for only 14% of the variation, and mean salinity was not included for lack of significance. At stations with widely fluctuating salinities, not only was biomass low, but species dominance also frequently changed. Severe fluctuation in salinity may have prevented abundant benthos by causing physiological stress that reduced growth and survival. Salinity may not have remained within the range of tolerance of any one plant species for long enough to allow the development of a substantially vegetated benthic community. Hence, gaining control over salinity fluctuation may be the key to estuarine habitat improvement through canal management in southern Florida.  相似文献   

12.
Shallow estuarine lagoons characterize >70 % of the eastern Alaskan Beaufort Sea coastline and, like temperate and tropical lagoons, support diverse and productive biological communities. These lagoons experience large variations in temperature (?2 to 14 °C) and salinity (0 to >45) throughout the year. Unlike lower latitude coastal systems, transitions between seasons are physically extreme and event-driven. On Arctic coastlines, a brief summer open-water period is followed by a 9-month ice-covered period that concludes with a late-spring sea ice breakup and intense freshwater run-off. From 2011 to 2014, we examined interannual variations in water column physical structure (temperature, salinity, and δ18O) in five lagoons that differ with respect to their degree of exchange with adjacent marine waters and magnitude of freshwater inputs. Temperature, salinity, and source water composition (calculated using a salinity and δ18O mixing model) were variable in space and time. During sea ice breakup in June, water column δ18O and salinity measurements showed that low salinity waters originated from meteoric inputs (50–80 %; which include river inputs and direct precipitation) and sea ice melt (18–51 %). Following breakup, polar marine waters became prevalent within a mixed water column over the summer open-water period within all five lagoons (26–63 %). At the peak of ice-cover extent and thickness in April, marine water sources dominated (75–87 %) and hypersaline conditions developed in some lagoons. Seasonal runoff dynamics and differences in lagoon geomorphology (i.e., connectivity to the Beaufort Sea) are considered key potential drivers of observed salinity and source water variations.  相似文献   

13.
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.  相似文献   

14.
A 70% reduction in freshwater discharge through the Cooper River Basin, South Carolina, has provided a unique opportunity to study changes in estuarine plant communities in response to a system-wide increase in salinity. A one-dimensional tidal prism mixing model was used to simulate the changes in the longitudinal salinity distribution which have occurred in the Cooper River since a diversion in 1985 reduced the mean flow from 442 to 130 m3 s?1. Model simulations indicate that a salinity increase of 10–14‰ has occurred in the region of the river where the marsh plant community shifts from a virtual monoculture ofSpartina alterniflora to a more diverse brackish community. The flow reduction and associated salinity increase are expected to result in an increased dominance of the halophyte,S. alterniflora, and a progressive exclusion of the less halotolerant species which currently inhabit this region.  相似文献   

15.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

16.
Influences of tides, freshwater discharge, and winds on water properties in the St. Jones River estuary (USA), a Delaware National Estuarine Research Reserve, were investigated using multiyear records of sea level, salinity, and turbidity, supplemented by a current profiler time series in 2007. Results demonstrate that instantaneous properties fluctuate with semidiurnal tides and resonant overtides, whereas tidal mean variations are forced by seasonal freshwater inflow and offshore winds. Mean sea level and salinity are highest in summer and vary with seasonal water temperature and rainfall, whereas sea level variability and turbidity are highest in winter on account of storm effects. Salinity and discharge modeling suggest that much (43–65%) of the freshwater resident in the estuary is derived from non-point sources below the head of tide. This diffuse freshwater inflow produces a seaward surface slope and weak mean current, which temporarily reverses under the influence of storm–wind setup within Delaware Bay.  相似文献   

17.
Will lowering estuarine salinity increase Gulf of Mexico oyster landings?   总被引:1,自引:0,他引:1  
Previous studies provide conflicting opinions on whether lower than average salinities in Gulf of Mexico (GOM) estuaries are likely to increase or decrease oyster harvests (Crassostrea virginica), which represented 69% and 54% of the United States oyster landings by weight, and dockside value, respectively, in 2003. The present study examined a 54-yr record (1950–2003) of oyster harvests and river discharge in five major estuaries in GOM states (Florida, Alabama, Mississippi, Louisiana, and Texas). Oyster landings were inversely related to freshwater inflow. Peaks in landings, 21 of 23 in West Florida, Alabama, Mississippi, and Texas combined, were coincidental with lows in river discharge from the major rivers in the estuaries. Lows in landings in these states (17 of 19) coincided with peaks in discharge of the major rivers feeding their estuaries. Landings in Breton Sound, Louisiana, were also inversely related to river discharge. The only exception to this pattern was for landings in the Plaquemines Parish, Louisiana, part of the Breton Sound estuary, where there were higher landings following increased Mississippi River discharge. The Bonnet Carré spillway, completed in 1931, diverts flood waters from the Mississippi River to Lake Pontchartrain, and it has been opened to reduce flood heights in 1937, 1950, 1973, 1975, 1979, 1983, and 1997. Twenty-five of 28 times after the spillway was opened, oyster landings in Mississippi were lower than in the other four states. The inverse relationship between freshwater inflow and oyster landings suggests that the proposed Bonnet Carré Freshwater Project, designed to reduce estuarine salinity, cannot be justified on the basis of anticipated higher oyster yields in Mississippi or Louisiana. Manipulating estuarine salinity in the GOM should be done within the context of the whole estuary and not just part of the estuary.  相似文献   

18.
To better understand the Fe isotope characteristics of natural samples in the Karst area, the Fe isotope compositions of riverine suspended particulates, lake suspended particulates, lake sediments, porewaters, phytoplanktons, and aerosols in the watersheds of Lake Aha (a mineralized water system) and Lake Hongfeng (a mesotrophic water system), which are located in the Karst area, southwest China, were investigated. The studied samples displayed a variable range between δ56Fe=?2.03‰ and 0.36‰. Aerosols and phytoplanktons have similar or slightly heavier Fe isotope compositions relative to the average of igneous rocks. Fe isotope compositions of riverine Suspended Particulate Matter (SPM) were mainly affected by the types of tributaries. Suspended particulates collected from tributaries seriously contaminated with coal mine drainages displayed negative δ56Fe values (?0.89‰ to ?0.31‰) during summer, and there were significant increases of δ56Fe values in winter, except AR2, which was polluted with both coal mine drainage and sewage effluent. Characteristics of lakes have important influences on Fe isotope compositions of suspended particulates, lake sediments, and porewaters. The epilimnetic particulate Fe of Lake Hongfeng had δ56Fe=?0.04‰ to 0.13‰, while lighter Fe isotope compositions were measured for particulate Fe from Lake Aha, ranging from ?0.42‰ to ?0.09‰. Sediments collected from Hou Wu (HW) station of Lake Hongfeng have an average δ56Fe value of 0.09‰ and their corresponding porewaters have lighter Fe isotope compositions, ranging from ?0.57‰ to ?0.31‰; no significant variations have been observed. For the Liang Jiang Kou (LJK) station of Lake Aha, the content of reactive Fe and the concentration of sulfate were all high. Due to the reactive Fe recycling, including dissimilatory Fe reduction, adsorption, and Fe–sulfide formation, porewaters sampled near the sediment surface have been found to have a δ56Fe value as low as ?2.03‰ and an increase up to 0.12‰, with a burial depth of 10?cm. In contrast, an opposite variation trend was found for LJK sediments. Sediments sampled at 1-cm depth had a value of δ56Fe=?0.59‰ and decrease as low as ?1.75‰ with burial depth. This investigation demonstrated that significant Fe isotope fractionations occur in surface environments. Fe isotope compositions of particulate Fe were seriously affected by Fe sources, and Fe biogeochemical recycling has an important influence on Fe isotope fractionations in lake sediments, especially when there are significant amounts of reactive Fe and sulfate.  相似文献   

19.
《Applied Geochemistry》2002,17(9):1241-1257
This study aimed to develop a methodology for assessing the hydrochemical evolution of a groundwater system, using fracture-filling and fracture-lining calcite. Fracture calcite in deep (to ca. 1000 m) granitic rocks of the Tono area, central Japan, was investigated by optical and electron microscopy, and chemical and isotopic analysis. Coupled with geological evidence, these new data imply 3 main origins for the waters that precipitated calcite: (1) relatively high-temperature hydrothermal solutions, precipitating calcite distinguished by δ18OSMOW from −3 to ca. 10‰, and with δ13CPDB from ca. −18 to −7‰; (2) seawater, probably partly of Miocene age, which precipitated calcite distinguished by δ13CPDB of ca. 0‰ and δ18OSMOW > ca. 20‰; (3) fresh water, with a variable δ13CPDB composition, but which precipitated calcite distinguished by δ13CPDB that was significantly < 0‰ and as low as ca. −29‰ and δ18OSMOW > ca. 17‰. Data for 14C suggest that at least some of the fresh-water calcite formed within the last 50 ka. The present day hydrogeological regime in the Tono area is also dominated by fresh groundwater. However, the marine calcite of probable Miocene age found at depth has shown no evidence for dissolution and many different calcite crystal forms have been preserved. Studies of other groundwater systems have correlated similar crystallographic variations with variations in the salinity of coexisting groundwaters. When this correlation is applied to the Tono observations, the calcite crystal forms imply a similar range of groundwater salinity to that inferred from the isotopic data. Thus, the present study suggests that even in presently low-salinity groundwater systems, calcite morphological variations may record the changing salinity of coexisting groundwaters. It is suggested that calcite morphological data, coupled with isotopic data, could provide a powerful palaeohydrogeological tool in such circumstances.  相似文献   

20.
Bahia de la Ascension (BA) is a shallow, mangrove-fringed coastal bay connected to the Caribbean through two inlets, outlined by the Mesoamerican Barrier Reef System. This work represents an initial investigation of the relative contribution of hydrometeorological and hydrodynamic forcing on salinity variation in this lagoon. Our objective is to assess the sensitivity of the salinity in BA to fluctuations in freshwater inflow and coastal oceanography. Two field trips were undertaken during rainy and dry seasons in 2007. Surface salinity was mapped across the system and CTD deployments carried out within BA and in the sea end-member to characterize temperature, conductivity, and water level. Also, cross-sectional CTD profiles were implemented to examine vertical stratification. The water balance indicated that 16 % of rainfall over the drainage basin (DB) becomes groundwater discharge plus surface runoff into BA during dry season, while 68 % of the precipitation input to the DB is supplied through groundwater–surface runoff to the bay during rainfalls. This combined inflow showed larger fluctuations than direct rainfall and, thus, has a greater potential to alter the seasonal salinity variations within BA. The tidal signal is selectively attenuated within BA, as diurnal frequencies are more readily filtered out than semidiurnal frequencies. Mesohaline conditions in the southwest bay are associated with freshwater sources, while saline water masses in the inlet are influenced by prevalent SE winds in the region and tidal phase, establishing a strong horizontal SW-NE estuarine salinity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号