首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

2.
The optical spectrum of the early B hydrogen-deficient star LS IV+6°2 has been analysed. With T eff = 31000 K, log  g  = 4.05, n H ∼ 10−4 and n c ∼ 0.1 (relative abundances by number), it is the hottest high-gravity extreme helium star (EHe) yet studied. The He  i spectrum shows all predicted permitted and forbidden transitions in absorption. LS IV+6°2 is a comparatively metal-rich EHe star; abundances of C, N, O, Ne, Mg, Al and P are typical of other EHes, whilst Si and S are somewhat deficient. With the surface parameters given, LS IV+6°2 lies close to the boundary of the helium star pulsation instability finger near T eff ∼ 27000 K. Available data indicate that the radial velocity is variable, but give no indication of amplitude or period.  相似文献   

3.
In this paper we report on optical spectroscopic observations of the low-mass X-ray binary 2S 0921–630 obtained with the Very Large Telescope. We found sinusoidal radial velocity variations of the companion star with a semi-amplitude of  99.1 ± 3.1 km s−1  modulated on a period of 9.006 ± 0.007 d, consistent with the orbital period found previously for this source, and a systemic velocity of  44.4 ± 2.4 km s−1  . Owing to X-ray irradiation, the centre of light measured by the absorption lines from the companion star is probably shifted with respect to the centre of mass. We try to correct for this using the so-called K -correction. Conservatively applying the maximum correction possible and using the previously measured rotational velocity of the companion star, we find a lower limit to the mass of the compact object in 2S 0921–630 of   MX sin3 i > 1.90 ± 0.25 M  (1σ errors). The inclination in this system is well constrained since partial eclipses have been observed in X-ray and optical bands. For inclinations in the range  60° < i < 90°  we find  1.90 ± 0.25 < MX < 2.9 ± 0.4 M  . However, using this maximum K -correction we find that the ratio between the mass of the companion star and that of the compact object, q , is 1.32 ± 0.37, implying super-Eddington mass-transfer rates; however, evidence for that has not been found in 2S 0921–630. We conclude that the compact object in 2S 0921–630 is either a (massive) neutron star or a low-mass black hole.  相似文献   

4.
New optical spectroscopy of the high-mass X-ray binary microquasar LS I +61 303 is presented. Eccentric orbital fits to our radial velocity measurements yield updated orbital parameters in good agreement with previous work. Our orbital solution indicates that the periastron passage occurs at radio phase 0.23 and the X-ray/radio outbursts are triggered 2.5–4 d after the compact star passage. The spectrum of the optical star is consistent with a B0 V spectral type and contributes ∼65 per cent of the total light, the remainder being the result of emission by a circumstellar disc. We also measure the projected rotational velocity to be   v sin  i ≃ 113 km s−1  .  相似文献   

5.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

6.
Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper, we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion,  σk≈ 15 km s−1  , is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically   i ≥ 25°  . Alternatively, a higher velocity kick distribution,  σk= 265 km s−1  , is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularization of the binary orbits has taken place. We discuss briefly how this might be achieved.  相似文献   

7.
We present CCD photometry in the Johnson U , B and V and Kron–Cousins I passbands for the open cluster NGC 2587. The sample consists of 4406 stars reaching down to   V ∼ 21.0  . We developed a new method to clean statistically the colour–magnitude diagrams. NGC 2587 appears to be a sparse, relatively bright open cluster, with a few tens of members projected on to a populous star field. The comparatively bright F7/8 II type star HD 70927, located close to the cluster centre, seems not to be a member. Our analysis suggests that NGC 2587 is slightly younger than the Hyades and probably of solar metallicity. A cluster radius of roughly 8 arcmin was estimated from the radial stellar density profile. From 18 probable cluster members with measured proper motions, we derive the following mean values for NGC 2587:  μα=−4.3 ± 3.6 mas yr−1  and  μδ=−2.5 ± 3.4 mas yr−1  . Adopting the theoretical metal content   Z = 0.02  , which provides the best global fit, we derive a cluster age of  500+60−50  . Simultaneously, colour excesses   E ( B − V ) = 0.10  and   E ( V − I ) = 0.15  and an apparent distance modulus of   V − MV = 12.50  are obtained. The interstellar extinction in the cluster direction is found to follow the normal law. NGC 2587 is located at a distance of (2.70 ± 0.70) kpc from the Sun and ∼9.8 kpc from the Galactic centre.  相似文献   

8.
The results of a 7-yr optical and UV spectroscopic study of the high-mass X-ray binary A 0535+26 are presented. It was found that throughout the period of the observations the line profile of Hα showed considerable variability. A correlation between the equivalent width of Hα and both V -band magnitude and ( B − V ) colour excess was observed, albeit with considerable scatter present in the data set. A giant X-ray flare in early 1994 was accompanied by a fading in optical and infrared photometric bands, and a reduction in the equivalent width of Hα. When the star was observed in 1994 September, it was found to have developed a double-peaked Hα profile, and further observations saw the V/R peak ratio vary cyclically, with a period of ∼1 yr. If this is identified as a global one-armed oscillation, it becomes the shortest period ever observed in a Be star. The accompanying photometric and spectroscopic observations provide a test of any theory seeking to describe the onset and behaviour of such a density wave.  相似文献   

9.
We have used the RXTE and INTEGRAL satellites simultaneously to observe the high-mass X-ray binary (HMXB) IGR J19140+0951. The spectra obtained in the 3–80 keV range have allowed us to perform a precise spectral analysis of the system along its binary orbit. The spectral evolution confirms the supergiant nature of the companion star and the neutron star nature of the compact object. Using a simple stellar wind model to describe the evolution of the photoelectric absorption, we were able to restrict the orbital inclination angle in the range 38°–75°. This analysis leads to a wind mass-loss rate from the companion star of  ∼5 × 10−8 M yr−1  , consistent with an OB I spectral type. We have detected a soft excess in at least four observations, for the first time for this source. Such soft excesses have been reported in several HMXBs in the past. We discuss the possible origin of this excess, and suggest, based on its spectral properties and occurrences around the superior conjunction, that it may be explained as the reprocessing of the X-ray emission originating from the neutron star by the surrounding ionized gas.  相似文献   

10.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

11.
Phase-resolved medium-resolution VLT spectroscopy of the low-mass X-ray binary GX 9+9 has revealed narrow C  iii emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230 ± 35 km s−1. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of   f ( M 1) ≥ 0.22 M  . Rotational broadening estimates together with assumptions for the mass donor give  0.07 ≤ q ≤ 0.35  and  182 ≤ K 2≤ 406 km s−1  . Despite a low-mass ratio, there is no evidence for a superhump in our data set. Doppler maps of GX 9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disc rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally, we note that the Bowen region in GX 9+9 is dominated by C  iii instead of N  iii emission as has been the case for most other X-ray binaries.  相似文献   

12.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

13.
We analyse a light curve (LC) of the symbiotic star BF Cyg, covering 114 yr of its photometric history. The star had a major outburst around the year 1894. Since then the mean optical brightness of the system is in steady decline, reaching only in the last few years its pre-outburst value. Superposed on this general decline are some six less intense outbursts of 1–2 mag and duration of 2000–5000 d. We find a cycle of 6376 d, or possibly twice this period, in the occurrence of these outbursts. We suggest that the origin of the system outbursts is in some magnetic cycle in the outer layers of the giant star of the system, akin to the less intense 8000-d magnetic cycle of our Sun. We further find, that in addition to its well-known binary period of 757.3 d, BF Cyg possesses also another photometric period of 798.8 d. This could be the rotation period of the giant star of the system. If it is, the beat period of these two periodicities, 14 580 d, is the rotation period of a tidal wave on the surface of the giant. A fourth period of 4436 d, the beat period of the 14 580-d and the 6376-d cycles is possibly also present in the LC. We predict that BF Cyg will be at the peak of its next outburst around the month of May in the year 2007. The newly discovered 798.8-d period explains the disappearance of the orbital modulation at some epochs in the LC. The 757.3-d oscillations will be damped again around the year 2013.  相似文献   

14.
We compare ultraviolet (UV) spectra of the recent soft X-ray transients XTE J1118+480 and XTE J1859+226. The emission line strengths in XTE J1118+480 strongly suggest that the accreting material has been CNO processed. We show that this system must have come into contact with a secondary star of about 1.5 M, and an orbital period ∼15 h, very close to the bifurcation value at which the nuclear and angular momentum loss time-scales are similar. Subsequent evolution to the current period of 4.1 h was driven by angular momentum loss. In passing through a period of 7.75 h the secondary star would have shown essentially normal surface abundances. XTE J1118+480 could thus represent a slightly later evolutionary stage of A0620-00. We briefly discuss the broad Ly α absorption wings in XTE J1118+480.  相似文献   

15.
IGR  J08408−4503  is a supergiant fast X–ray transient discovered in 2006 with a confirmed association with a O8.5Ib(f) supergiant star, HD 74194. We report on the analysis of two outbursts caught by Swift /Burst Alert Telescope (BAT) on 2006 October 4 and 2008 July 5, and followed up at softer energies with Swift /X-ray Telescope (XRT). The 2008 XRT light curve shows a multiple-peaked structure with an initial bright flare that reached a flux of  ∼10−9 erg cm−2 s−1  (2–10 keV), followed by two equally bright flares within 75 ks. The spectral characteristics of the flares differ dramatically, with most of the difference, as derived via time-resolved spectroscopy, being due to absorbing column variations. We observe a gradual decrease in the N H, derived with a fit using absorbed power-law model, as time passes. We interpret these N H variations as due to an ionization effect produced by the first flare, resulting in a significant decrease in the measured column density towards the source. The durations of the flares as well as the times of the outbursts suggest that the orbital period is ∼35 d, if the flaring activity is interpreted within the framework of the Sidoli et al. model with the outbursts triggered by the neutron star passage inside an equatorial wind inclined with respect to the orbital plane.  相似文献   

16.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

17.
The June Boötid meteor shower (sometimes referred to as the Draconids) surprised a number of regular and casual observers by an outburst with maximum zenithal hourly rates (ZHRs) near 100 on 1998 June 27 after a quiescent period of several decades. A total of 1217 June Boötid meteors were recorded during regular visual meteor observations throughout this outburst. An average population index of r =2.2±0.10 was derived from 1054 shower magnitude estimates. The broad activity profile with ZHR>40 lasting more than 12 h and the large spread of apparent radiants in 1998 resemble the 1916 and 1927 outbursts. The peak time is found to be at about λ =95°.7 (2000.0); peak ZHRs are of the order of 200, whereas reliable averages reach only 81±7. The period of high ZHRs covered by a single observer implies a full width at half-maximum of 3–4 h. The resulting maximum flux of particles causing meteors brighter than +6.5 mag is between 0.04 and 0.06 km−2 h−1. The average radiant from photographic, radar and visual records is α =224°.12, δ =+47°.77. The observed activity outbursts in 1916, 1927 and 1998 are not related to the orbital period or the perihelion passages of the parent comet 7P/Pons–Winnecke. These are probably a consequence of the effects of the 2:1 resonance with Jupiter.  相似文献   

18.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

19.
We present 53 simultaneous photometric ( I band) and spectroscopic (69009500 Å) observations of GRO J0422+32, taken during 1997 December. From these we determine that J0422+32 was in its lowest state yet observed, at I =20.44±0.08. Using relative spectrophotometry, we show that it is possible to correct very accurately for telluric absorption. Following this, we use the TiO bands at 7055 and 7589 Å for a radial velocity study and thereby obtain a semi-amplitude of 378±16 km s1, which yields f ( M )=1.191±0.021 M and consistent with previous observations. We further demonstrate that this little-explored method is very powerful for such systems. We also determine a new orbital ephemeris of HJD=245 0274.4156±0.0009+0.212 1600±0.000 0002 E .
We see some evidence for an ellipsoidal modulation, from which we determine the orbital inclination of J0422+32 to be less than 45°. We therefore calculate a minimum mass for the primary of 2.22 M, consistent with a black hole, but not necessarily the supermassive one proposed recently (1997) by Beekman et al. We obtain an M45 spectral type for the secondary star, and determine that the secondary contributes 38±2 per cent of the flux that we observe from J0422+32 over the range 69508400 Å. From this we calculate the distance to the system to be 1.39±0.15 kpc.  相似文献   

20.
Two nights of phase-resolved medium-resolution Very Large Telescope spectroscopy of the extra-galactic low-mass X-ray binary LMC X−2 have revealed a 0.32 ± 0.02 d spectroscopic period in the radial velocity curve of the He  ii λ4686 emission line that we interpret as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disc in LMC X−2. This is strengthened by He  ii λ4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X−2, with a velocity of   K em= 351 ± 28 km s−1  , that we tentatively interpret as coming from the irradiated side of the donor star. Since K em must be smaller than K 2, this leads to the first upper limit on the mass function of LMC X−2 of   f ( M 1) ≥ 0.86  M  (95 per cent confidence), and the first constraints on its system parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号