首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chronological, geochemical and Sr–Nd–Pb isotopic analyses have been carried out on the Mesozoic plutons in western Shandong with the aim of characterizing crustal–mantle evolution during the tectono-thermal reactivation of the craton. Detailed SHRIMP zircon U–Pb dating reveals two main periods of Mesozoic activity with contrasting compositions. The older magmatic pulse is manifested by monzonites and monzodiorites from Tongshi for which zircon rims yield a concordant age of 177±4 Ma and the cores have a discordant age of ca. 2.5 Ga. Low MgO and Cr, high Na2O contents and especially their isotopic compositions (87Sr/86Sr < 0.7042, 206Pb/204Pb < 16.8 and Nd ~ –12) are consistent with derivation from late Archean–Paleoproterozoic lower crust. Relatively high HREE contents in these Jurassic plutons indicate a garnet-free source (<32 km), in contrast to the garnet-bearing source (>40 km) of the late Mesozoic high Sr and low Y granitoids from the same region. Distinctively different depths of crustal melting suggest dynamic thickening of the crust by magmatic underplating during the Jurassic and Cretaceous. The younger dioritic plutons from Laiwu and Yinan were emplaced at 132–126 Ma and show relatively high MgO and Cr contents and large isotopic variability. They were likely derived from enriched lithospheric mantle source and were subjected to crustal contamination during magma evolution. Early Cretaceous mantle melting is coeval with the widespread late Yanshanian granitic magmatism in North China. Early Cretaceous time may correspond to a critical period when a temperature increase due to lithospheric thinning allowed the intersection of the local geotherm and the wet peridotite solidus. While some mantle-derived magmas were erupted, most were trapped at variable crustal depths, triggering large-scale concomitant melting of the crust. Lithospheric thinning must have continued until the late Cretaceous because of the change in the source of mafic magmas from lithospheric to asthenospheric at that time. It is proposed that removal of the lithospheric keel beneath the North China craton may have been initiated as early as the Jurassic, but with the most intense period in the Cretaceous between 130–75 Ma. Such a relatively long timescale (~100 Ma) emphasizes the role of thermomechanical erosion by convective mantle in lithospheric thinning beneath this region.  相似文献   

2.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

3.
A geochemical and isotopic study was carried out for three Mesozoic intrusive suites (the Xishu, Wuan and Hongshan suites) from the North China Craton (NCC) to understand their genesis and geodynamic implications. The Xishu and Wuan suites are gabbroic to monzonitic in composition. They share many common geochemical features like high Mg# and minor to positive Eu anomalies in REE patterns. Initial Nd–Sr isotopic compositions for Xishu suite are Nd(135 Ma)=–12.3 to –16.9 and mostly ISr = 0.7056–0.7071; whereas those for Wuan suite are slightly different. Pb isotopic ratios for Xishu suite are (206Pb/204Pb)i = 16.92–17.3, (207Pb/204Pb)i=15.32–15.42, (208Pb/204Pb)i=37.16–37.63, which are slightly higher than for Wuan suite. The Xishu–Wuan complexes are considered to originate from partial melting of an EM1-type mantle source, followed by significant contamination of lower crustal components. The Hongshan suite (mainly syenite and granite) shows distinctly higher Nd(135 Ma) values (–8 to –11) and slightly higher Pb isotopic ratios than the Xishu–Wuan suites. It was formed via fractionation of a separate parental magma that also originated from the EM1-type mantle source, with incorporation of a small amount of lower crustal components. Partial melting of the mantle sources took place in a back-arc extensional regime that is related to the subduction of the paleo-Pacific slab beneath the NCC.  相似文献   

4.
Elemental and Sr–Nd isotopic results are presented for the early Mesozoic volcanic sequence (~172 Ma) in southern Jiangxi Province, South China. The sequence is voluminously composed of ~45% subalkaline basaltic rocks (group 1), <5% high-mg andesite–dacites (group 2) and ~50% rhyolites (group 3). The group 1 rocks are characterized by (La/Yb)cn = 3.8–7.2, Eu/Eu* = 0.65–1.15, Nb/La = 0.64–0.99, 87Sr/86Sr(t) = 0.70602~0.70822 and Nd(t) = –1.63 to +0.11, similar to those of an EMII-like source. The group 2 rocks have mg=0.42~0.60, SiO2=60.24~66.71%, MgO=2.65~ 5.54%, Ni=24~102 ppm and Cr=84~266 ppm, classified as high-mg andesitic rocks. These rocks are more enriched in LILEs and LREE with more significant negative Eu anomaly (0.63~0.79), are more depleted in HFSEs with Nb/La ratios of 0.40–0.56 and have lower Nd(t) (–9.44 to –7.78) and higher 87Sr/86Sr(t) (0.70985~0.71016), in comparison with the group 1 rocks. They most likely originated from metasomatised veins in the lithospheric mantle. The origination of the group 1 and group 2 magma suggests the development of a peridotite-plus-vein lithospheric mantle during early Mesozoic era beneath the interior of the Cathaysian block. The group 3 rhyolites are characterized by high SiO2 (72.75~77.97%), Zr (99~290 ppm), Hf (3.9~9.7 ppm) and Ga/Al (2.76~3.87) and significant Nb–Ta, Ba–Sr and P–Ti depletions. These rhyolites exhibit Sr–Nd isotopic compositions (87Sr/86Sr(t) = 0.70962~0.71104, Nd(t) = –4.63 to –5.80) similar to the contemporaneous Zhaibei and Pitou A-type granites in the area. Such characteristics suggest that they might be derived from the underplating basaltic magma contaminated by crustal materials. Therefore, an early Mesozoic rifting model in response to intracontinental lithospheric extension is proposed to account for the early Mesozoic volcanism in southern Jiangxi Province, South China.  相似文献   

5.
High-Al gabbro represents one of the latest phases of magmatism in the 1.43 Ga Laramie anorthosite complex (LAC) in southeastern Wyoming. This lithology, which is mineralogically and geochemically the most primitive in the LAC, forms dikes and small intrusions that cross cut monzonitic and anorthositic rocks. High-Al gabbro is characterized by high Al2O3 (15–19 wt%), REE patterns with positive europium anomalies (Eu/Eu*=1.2–3.8), and the lowest initial 87Sr/86Sr (as low as 0.7033) and highest initial Nd (up to +2) in the LAC. Their Sr and Nd isotopic characteristics indicate a mantle origin followed by crustal assimilation during ascent. Intermediate plagioclase (An50–60) and mafic silicate (Fo54–63) compositions suggest that they are not primary mantle melts and that they differentiated prior to final emplacement. High-Al gabbros of the LAC are similar compositionally to gabbros from several other Proterozoic anorthosite complexes, including rocks from the Harp Lake complex and the Hettasch intrusion in Labrador and the Adirondack Mountains of New York. These gabbros are considered to be parental to their associated anorthositic rocks, a theory that is supported by recent experimental work. We interpret LAC high-Al gabbros to represent mantle-derived melts produced by the differentiation of a basaltic magma in an upper mantle chamber. Continued evolution of this magma eventually resulted in the formation of plagioclase-rich diapirs which ascended to mid-crustal levels and formed the anorthositic rocks of the LAC. Because these gabbros intrude the anorthositic rocks, they do not represent directly the magma from which anorthosite crystallized and instead are younger samples of magma formed by identical processes.  相似文献   

6.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

7.
Two different contamination processes have been identified as having been operative in the genesis of a plutonic suite: initial contamination of a mantle source, and subsequent crustal contamination of uprising partial melts from the mantle. These processes are indicated by a detailed analyses of Nd, Sr, and oxygen isotopes together with major-and trace-elements of the 32–30 Ma calc-alkaline Bergell intrusion. This intrusion is located at the suture of the Alpine continental collision zone and contains rock types capable of discriminating between mantle and intracrustal processes. A range from basaltic-andesitic dykes in the surrounding country rocks, cumulitic hornblendites, gabbros, tonalite, granodiorite and lamprophyres, to pegmatites and aplites, is exposed in this single intrusion. The results of REE modelling and isotopic compositions of the basic members suggest that the cumulates were fractionated from a picrobasaltic liquid originating by partial melting of enriched subcontinental mantle (Nd=+4). Increases in 87Sr/86Sr (0.7055) and 18O(+6.7) in these samples relative to the mantle array and compositions of other Periadriatic intrusions are most likely the result of an initial contamination of the mantle source by dehydration or partial melting of altered subducted oceanic crust. Slight differentiation of such a picrobasaltic liquid produced the basaltic-andesitic dykes. Simultaneous fractional crystallization and contamination of the uprising magma by continental crust produced crustal isotopic signatures which increase with acidity to values of (Nd=-7.6), 87Sr/86Sr=0.716 and 18O=+10. The crustal imprint and LREE enrichment in the dominating tonalite increase with decreasing crystallization depth which indicates that the tonalites were emplaced in several distinct batches with different degrees of contamination. Shoshonitic lamprophyres, which intruded into the partly solidified granodiorite, were generated in a deep, strongly contaminated mantle source. The posttectonic 26 Ma Novate leucogranite is not cogenetic with the main Bergell body, but rather formed from a predominantly crustal source. If the described features are indeed due to mantle source contamination processes, which are well known for volcanic arcs, it must be concluded that these may also play a significant role in the genesis of calcalkaline plutonic suites.  相似文献   

8.
The Closepet batholith in South India is generally considered as a typical crustal granite emplaced 2.5 Ga ago and derived through partial melting of the surrounding Peninsular Gneisses (3.3 to 3.0 Ga). In the field, it appears as a composite batholith made up of at least two groups of intrusions. (a) An early SiO2-poor group (clinopyroxene quartz-monzonite and porphyritic phyritic monzogranite) is located in the central part of the batholith. These rocks display a narrow range in both initial 87Sr/86Sr (0.7017–0.7035) and Nd(–0.9to –4.1). (b) A later SiO2-rich group (equigranular grey and pink granites) is located along the interface between the SiO2-poor group and the Peninsular Gneisses. They progressively grade into migmatised Peninsular Gneisses, thus indicating their anatectic derivation. Their isotopic characteristics vary over a wide range (87Sr/86Sr ratios=0.7028–0.7336 and Nd values from-2.7 to-8.3, at 2.52 Ga). Field and geochronological evidence shows that the two groups are broadly contemporaneous (2.518–2.513 Ga) and mechanically mixed. This observation is supported by the chemical data that display well defined mixing trends in the Sr vs Nd and elemental variation diagrams. The continuous chemical variation of the two magmatic bodies is interpreted in terms of interaction and mixing of two unrelated end-members derived from different source regions (enriched peridotitic mantle and Peninsular Gneisses). It is proposed that the intrusion of mantle-derived magmas into mid-crustal levels occurred along a transcurrent shear zone; these magmas supplied additional heat and fluids that initiated anatexis of the surrounding crust. During this event, large-scale mixing occurred between mantle and crustal melts, thus generating the composite Closepet batholith. The mantle-derived magmatism is clearly associated with granulite facies metamorphism 2.51±0.01 Ga ago. Both are interpreted as resulting from a major crustal accretion event, possibly related to mantle plume activity.  相似文献   

9.
Crustal contamination of basalts located in the western United States has been generally under-emphasized, and much of their isotopic variation has been ascribed to multiple and heterogeneous mantle sources. Basalts of the Miocene Columbia River Basalt Group in the Pacific Northwest have passed through crust ranging from Precambrian to Tertiary in age. These flows are voluminous, homogenous, and underwent rapid effusion, all of which are disadvantages for crustal contamination while en route to the surface. The Picture Gorge Basalt of the Columbia River Basalt Group erupted through Paleozoic and Mesozoic oceanic accreted terranes in central Oregon, and earlier studies on these basalts provided no isotopic evidence for crustal contamination. New Sr, Nd, Pb, and O isotopic data presented here indicate that the isotopic variation of the Picture Gorge Basalt is very small, 87Sr/86Sr=0.70307–0.70371, Nd=+7.7-+4.8, 18O=+5.6±6.1, and 206Pb/204Pb=18.80–18.91. Evaluation of the Picture Gorge compositional variation supports a model where two isotopic components contributed to Picture Gorge Basalt genesis. The first component (C1) is reflected by low 87Sr/86Sr, high Nd, and nonradiogenic Pb isotopic compositions. Basalts with C1 isotopic compositions have large MgO, Ni, and Cr contents and mantle-like 18O=+5.6. C1 basalts have enrichments in Ba coupled with depletions in Nb and Ta. These characteristics are best explained by derivation from a depleted mantle source which has undergone a recent enrichment by fluids coming from a subducted slab. This C1 mantle component is prevalent throughout the Pacific Northwest. The second isotopic component has higher 87Sr/ 86Sr and 18O, lower Nd, and more radiogenic Pb isotopic compositions than C1. There is a correlation in the Picture Gorge data of Sr, Nd, and Pb isotopes with differentiation indicators such as decreasing Mg#, and increasing K2O/TiO2, Ba, Ba/Zr, Rb/Sr, La/Sm, and La/Yb. Phase equilibrium and mineralogical constraints indicate that these compositional characteristics were inherited in the Picture Gorge magmas at crustal pressures, and thus the second isotopic component is most likely crustal in origin. Mixing and open-system calculations can produce the isotopic composition of the most evolved Picture Gorge flows from the most primitive compositions by 8 to 21% contamination of isotopic compositions similar to accreted terrane crust found in the Pacific Northwest. Therefore, in spite of the disadvantages for crustal contamination and their narrow range in isotopic compositions, the process controlling isotopic variation within the Picture Gorge Basalt is primarily crustal contamination. We suggest that comprehensive analyses for basaltic suites and careful consideration of these data must be made to test for crustal contamination, before variation resulting from mantle heterogeneity can be assessed.Deceased  相似文献   

10.
Rb/Sr data for seven basaltic provinces (K-Ar ages 50-0 Ma) in southeastern Australia imply isotopic heterogeneities in the mantle sources. The total range of 87Sr/ 86Sr is 0.7031–0.7054. Effects of crustal contamination are negligible, since the rocks analyzed represent primary or primitive magma compositions. The inferred scales of heterogeneity range from <1 km for small intraprovince variations, to in the order of 100 km for the larger differences between provinces.Correlation of regional high 87Sr/86Sr in basaltic rocks with the presence of amphibole-bearing upper mantle xenoliths suggests that the degree of metasomatic activity in the underlying mantle is a major control on the Rb/Sr and 87Sr/86Sr values of mantle source volumes and partial melts derived from these. Xenolith data also indicate that both pervasive metasomatism and the presence of crystallized melts or cumulates as veins and dykes in mantle wall rock are possible mechanisms for metasomatic additions.Mantle isochrons can be constructed both within some provinces and between provinces. However, episodic metasomatism in the mantle source regions, with correlated enrichment in Rb/Sr and 87Sr/86Sr, can produce artificial isochrons which may have no relevance to mantle differentiation events.  相似文献   

11.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

12.
Initial 87Sr/86Sr and 143Nd/144Nd ratios of Phanerozoic granitoids and related intrusions of the New Zealand block display a mixing-type array indicative of the involvement in their sources of old continental crustal material, most likely of Proterozoic age. Sr(T) values range from –4 to +273 (87Sr/86Sr=0.7041–0.7233), while Nd(T) ranges from +2.7 to –11.0. Preexisting metasedimentary rocks have generally higher Sr and lower Nd (ranging to present-day values of +646 and –15.0, respectively), and, particularly for the Mesozoic intrusives, are isotopically appropriate mixing end-members. The widespread, early Paleozoic Greenland Group graywackes, which are derived from Proterozoic sources, are modeled as the source of the crustal end-member mixing with mantle-derived mafic magmas to produce the intrusive rocks. Four different types of models are applied to the isotopic and trace-element (Rb, Sr, Ba, REE) data: simple mixing; mixing with a partial melt of the metasedimentary rock, with or without isotopic equilibrium; and assimilation-fractional crystallization. Based on these models, some constraints may be applied on petrogenesis (e.g., the lack of high Rb concentrations points to the presence of biotite, and HREE depletion points to the presence of garnet); however, the models fail to adequately explain all the data. The New Zealand granitoids show similarities in isotopic character not only to rocks from offshore islands on the New Zealand block, but also to similar-aged granitoids in adjacent regions of Antarctica and Australia. This points to similarities in crustal character between continental blocks formerly proximal in Gondwanaland. We note an overall increase in Nd and decrease in Sr in felsic magmas from the Paleozoic to the Mesozoic to the Cenozoic in New Zealand, indicative of a decrease over time in the level of influence of recycled continental crust in subduction-related magmatism.Division Contribution No. 4538 (582)  相似文献   

13.
The Late Middle Permian ( 260 Ma) Emeishan large igneous province in SW China contains two magmatic series, one comprising high-Ti basalts and Fe-rich gabbroic and syenitic intrusions, the other low-Ti basalts and mafic–ultramafic intrusions. The Fe-rich gabbros are spatially and temporally associated with syenites. Each series is associated with a distinctive type of mineralization, the first with giant Fe–Ti–V oxide ore deposits such as Panzhihua and Baima, the second with Ni–Cu–(PGE) sulfide deposits such as Jinbaoshan, Limahe and Zhubu. New SHRIMP zircon U–Pb isotopic data yielded 263 ± 3 Ma for the Limahe intrusion, 261 ± 2 Ma for the Zhubu intrusion and 262 ± 2 Ma for a syenitic intrusion. These new age dates, together with previously reported SHRIMP zircon U–Pb ages, suggest that all these intrusions are contemporaneous with the Emeishan flood basalts and formed during a major igneous event at ca. 260 Ma.The oxide-bearing intrusions have higher Al2O3, FeO (as total iron) and total alkalis (Na2O + K2O) but lower MgO than the sulfide-bearing intrusions. All intrusions are variably enriched in LREE relative to HREE. The oxide-bearing intrusions display positive Nb- and Ti-anomalies and in certain cases negative Zr–Hf anomalies, whereas the sulfide-bearing intrusions have obvious negative Nb- and Ti-anomalies, a feature of crustal contamination. Individual intrusions have relatively small ranges of Nd(t) values. All the intrusions, however, have Nd(t) values ranging from − 3.9 to + 4.6, and initial 87Sr/86Sr ratios from 0.7039 to 0.7105. The syenites have very low MgO (< 2 wt.%) but highly variable Fe2O3 (2.5 to 13 wt.%) with initial 87Sr/86Sr ratios ranging from 0.7039 to 0.7089. Magmas from both series could have derived by melting of a heterogeneous mantle plume: the high-Ti series from a Fe-rich, more fertile source and the low-Ti series from a Fe-poor, more refractory source. In addition, the low-Ti series underwent significant crustal contamination. The two magma series evolved along different paths that led to distinct mineralization styles.  相似文献   

14.
Hornblende- and clinopyroxene-phyric lamprophyre dykes exposed in the Roaring River Complex, Superior Province are alkaline, nepheline-normative, basaltic compositions (>50 wt% SiO2), that range from primitive to fractionated [Mg/(Mg + total Fe)=0.66–0.40; Ni=200–35 ppm], and which have high abundances of light rare earth elements (REE) [(Ce/Yb)n=16–26, Cen=60–300; n = chondrite normalized], Sr (870–1,800 ppm), P2O5 (0.4–1.3 wt%), and Ba (150–900 ppm). Crystal fractionation of the lamprophyres produced coeval gabbro and clinopyroxenite cumulate bodies. A whole-rock Sm–Nd isochron for lamprophyres and gabbro-pyroxenite yields a crystallization age of 2,667±51 Ma Ma (I=0.50929±0.0004; Nd = + 2.3 0.7). Whole-rock Sr isotope data are scattered, but suggest an initial 87Sr/86Sr ratio of 0.7012, similar to bulk Earth. The elevated levels of light REEs and Sr in the lamprophyres were not due to crustal contamination or mixing with contemporaneous monzodioritic magmas, but a result of partial melting of a mantle source which was enriched in these and other large-ion-lithophile elements (LILEs) shortly before melting. The lamprophyres were contemporaneous with mantle-derived, high-Mg, LILE-enriched monzodiorite to granodiorite of the Archean sanukitoid suite. Both suites have concave-downward light REE profiles, suggesting that depleted mantle was common to their source regions, but the higher light REE abundances, higher Ba/La ratios, and lower Nd values (+1.3±0.3) of the parental monzodiorites suggest a more enriched source. The lamprophyres and high-Mg monzodiorites were derived from a mineralogically and compositionally heterogeneous, LILE-enriched mantle lithosphere that may have been part of a mantle wedge above a subducting plate in an arc environment.  相似文献   

15.
《International Geology Review》2012,54(12):1389-1400
Post-orogenic mafic dikes are widespread across eastern Shandong Province, North China Craton, eastern China. We here report new U–Pb zircon ages and bulk-rock geochemical and Sr–Nd–Pb isotopic data for representative samples of these rocks. LA-ICP-MS U–Pb zircon analysis of two mafic dike samples yields consistent ages of 118.7 ± 0.25 million years and 122.4 ± 0.21 million years. These Mesozoic mafic dikes are characterized by high (87Sr/86Sr) i ranging from 0.7082 to 0.7087, low ?Nd(t) values from??17.0 to??17.5, 206Pb/204Pb from 17.14 to 17.18, 207Pb/204Pb from 15.44 to 15.55, and 208Pb/204Pb from 37.47 to 38.20. Our results suggest that the parental magmas of these dikes were derived from an ancient, enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials prior to magma generation. The mafic dikes underwent minor fractionation during ascent and negligible crustal contamination. Combined with previous studies, these findings provide additional evidence that intense lithospheric thinning beneath eastern Shandong occurred at ~120 Ma, and that this condition was caused by the removal/foundering of the lithospheric mantle and lower crust.  相似文献   

16.
A banded amphibolite sequence of alternating ultramafic, mafic (amphibolite) and silicic layers, tectonically enclosed within Variscan migmatites, outcrops at Monte Plebi (NE Sardinia) and shows similarities with leptyno-amphibolite complexes. The ultramafic layers consist of amphibole (75–98%), garnet (0–20%), opaque minerals (1–5%) and biotite (0–3%). The mafic rocks are made up of amphibole (65–80%), plagioclase (15–30%), quartz (0–15%), opaque minerals (2–3%) and biotite (0–2%). The silicic layers consist of plagioclase (60–75%), amphibole (15–30%) and quartz (10–15%). Alteration, metasomatic, metamorphic and hydrothermal processes did not significantly modify the original protolith chemistry, as proved by a lack of K2O-enrichment, Rb-enrichment, CaO-depletion, MgO-depletion and by no shift in the rare earth element (REE) patterns. Field, geochemical and isotopic data suggest that ultramafic, mafic and silicic layers represent repeated sequences of cumulates, basic and acidic rocks similar to macrorhythmic units of mafic silicic layered intrusions. The ultramafic layers recall the evolved cumulates of Skaergaard and Pleasant Bay mafic silicic layered intrusions. Mafic layers resemble Thingmuli tholeiites and chilled Pleasant Bay mafic rocks. Silicic layers with Na2O: 4–6 wt%, SiO2: 67–71 wt% were likely oligoclase-rich adcumulates common in many mafic silicic layered intrusions. Some amphibolite showing a strong Ti-, P-depletion and REE-depletion are interpreted as early cumulates nearly devoid of ilmenite and phosphates. All Monte Plebi rocks have extremely low Nb, Ta, Zr, Hf content and high LILE/HFSE ratios, a feature inherited from the original mantle sources. The mafic and ultramafic layers show slight and strong LREE enrichment respectively. Most mafic layer samples plot in the field of continental tholeiites in the TiO2–K2O–P2O5 diagram and are completely different from N-MORB, E-MORB and T-MORB as regards REE patterns and Nd, Sr isotope ratios but show analogies with Siberian, Deccan and proto-Atlantic rift tholeiites. Comparisons with Thingmuli, Skaergaard and Kiglapait rocks and with experimental data suggest that the Monte Plebi intrusion was an open-to-oxygen system with fO2 FMQ. Mafic and ultramafic samples yielded Nd(460)=+0.79 /+3.06 and 87Sr/86Sr=0.702934–0.703426, and four silicic samples Nd(460)=–0.53/–1.13; 87Sr/86Sr=0.703239–0.703653. Significant differences in Nd isotope ratios between mafic and silicic rocks prove that both groups evolved separately in deeper magma chambers, from different mantle sources, with negligible interaction with crustal material, and were later repeatedly injected within a shallower magma chamber. The spectrum of Sr and Nd isotope data is consistent with a slightly enriched mantle metasomatized during an event earlier than 460 Ma. The metasomatising component was represented by alkali-Th-rich fluids of crustal origin rather than by sedimentary materials, able to modify alkali and Sr–Nd isotope systematics. Monte Plebi layered amphibolites might represent the first example of a strongly metamorphosed fragment of an early Paleozoic mafic silicic layered intrusion emplaced in a thinning continental crust and then tectonically dismembered by Variscan orogeny.  相似文献   

17.
Northern Brazil contains remnants of Mesozoic flood basalts and hypabyssal rocks that were apparently emplaced during tectonism related to opening of the Atlantic Ocean. Analyses and new K-Ar ages reveal that this 700x250 km Maranhão province (5°–8°S) has low-Ti basalts (1.1 wt% TiO2) in the western part that range about 160 to 190 Ma, and high-Ti basalts (3.4–4.4 wt% TiO2) in the eastern part about 115–122 Ma. Low-Ti basalt compositions are less evolved and have a smaller range, Mg# 62-56, than the high-Ti basalts, Mg# 44–33. General characteristics of the least evolved members of low- and high-Ti groups include, respectively, Zr 100 and 250 ppm, Sr 225 and 475 ppm, Ba 200 and 500 ppm, Nb 10 and 26 ppm, Y 29 and 36 ppm, La/Yb(n) 4.2 and 8.8, where La(n) is 30 and 90. Overall compositions resemble the low- and high-Ti basaltic rocks of the Mesozoic Serra Geral (Paraná) province in southern Brazil. The Maranhão low-Ti basalts have more radiogenic Sr and Pb and higher 18O than the high-Ti basalts. Respectively, low- vs high-Ti: Sr26–54 vs 15–18; 206Pb/204Pb=18.25–.78 vs 18.22–.24; and 18O 8.9–12.6 vs 6.5–8.6. Nd isotopes overlap: Nd–1.6 to –3.8 vs –2.1 to –3. Ages, compositions, and isotopes indicate that the low- and high-Ti groups had independent parentages from enriched subcontinental mantle. However, both groups can be modeled from one source composition if low-Ti basalt isotopes reflect crustal contamination, and if the parentages for each group were picritic liquids that represent either higher (for low-Ti) or lower (for high-Ti) percentages of melting of that single source. When comparing Pb isotopes of Maranhão and Serra Geral high-Ti basalts (uncontaminated) to evaluate the DUPAL anomaly, Maranhão has Pb 7/4=4.6–11, and Pb 8/4=72–87; Serra Geral has Pb 7/4=10–13, and Pb 8/4=95–125. The small difference is not enough to conform to DUPAL contours, and is inconsistent with large-scale isotopic heterogeneity of mantle beneath Brazil prior to rifting of South America from Africa. Maranhão low-Ti magmas probably relate to the opening of central North Atlantic, and high-Ti magmas to the opening of equatorial Atlantic. The proposed greater percentage of source melting for low-Ti basalts may reflect a Triassic-Jurassic hotspot, while lesser melting for high-Ti magmas may relate to Cretaceous decompressional (rifting) melting.  相似文献   

18.
Geochemical analyses were interpreted on the dominant lithological units and on a deep crustal fluid from the Continental Deep Drilling Project (KTB) Pilot Hole, situated at the western margin of the Variscan Bohemian Massif. The biotite gneiss (from 384 m depth) shows a rare earth element pattern very similar to the European shale composite with Nd model ages of 940 Ma (CHUR) and 1.4 Ga (DM). The lamprophyre dike in the upper profile (1549 m), a nepheline and olivine normative basalt, is geochemically and isotopically similar to rocks from the Tertiary Central European Volcanic Province. The lower metabasite sequence (3575–4000 m), with an intrusion age of approximately 500 Ma, is made up primarily of highly metamorphosed subalkalic olivine basalts. The geochemical characteristics of the metabasites are a (La/Yb)N of 5–10, an La concentration of 20–50 times chondrite as well as (87Sr/86Sr)i of 0.7035–0.7038 and Nd(T) of 4–6. These values suggest a depleted mantle source for the igneous precursors, evolving by assimilation-fractional crystallization processes with up to 25% of upper crust into the ultramafic, basaltic, and intermediate rock types of the metabasite sequence. The strong geochemical and chronological similarities between the KTB metabasites and rocks from the Münchberg Massif suggest that these units belong to the same lithological complex. The high salinity as well as the radiogenic 87Sr/86Sr ratio of 0.709413 in the KTB fluid from 4000 m depth might be the result of migrating fluids reacting with the regional Permo-Mesozoic evaporite deposits, followed by extensive Sr isotopic exchange with the upper crust.  相似文献   

19.
Ridge segments and fracture zones from the American-Antarctic Ridge have been systematically dredge sampled from 4° W to 18° W. Petrographic studies of the dredged basalts show that the dominant basalt variety is olivine-plagioclase basalt, although olivine-plagioclase-clinopyroxene basalt is relatively common at some localities. Selected samples have been analysed for major and trace elements, rare earth elements and Sr and Nd isotopes. These data show that the majority of samples are slightly evolved (Mg#=69-35) N-type MORB, although a small group of samples from a number of localities have enriched geochemical characteristics (T- and P-type MORB).These different types of MORB are readily distinguished in terms of their incompatible trace element and isotopic characteristics: N-type MORB have high Zr/Nb (17–78), Y/Nb (4.6–23) and 143Nd/144Nd (0.51303–0.51308) ratios, low Zr/Y (2.2–4.2) and 87Sr/86Sr (0.70263–0.70295) ratios and have (La/Sm)N<1.0; T-type MORB have lower than chondritic Zr/Nb ratios (8.8–15.5), relatively low Y/Nb (1.9–4.3) and 143Nd/144Nd (0.51296–0.51288) ratios and relatively high Zr/Y (3.1–4.7), 87Sr/86Sr (0.70307–0.70334) and (La/Sm)N (1.1–1.5) ratios; the single sample of P-type MORB has low Zr/Nb (6.3), Y/Nb (0.9) and 143Nd/144Nd (0.51287) ratios and high Zr/Y (7.1), 87Sr/86Sr (0.70351) and (La/Sm)N (2.4) ratios. The geochemical characteristics of this sample are essentially identical to those of the Bouvet Island lavas.Geochemically enriched MORB are less abundant on the American-Antarctic Ridge than on the Southwest Indian Ridge but their geochemical characteristics are identical. The compositions of T- and P-type MORB are consistent with a regional mixing model involving normal depleted mantle and Bouvet plume type magma. On a local scale the composition of T-type MORB is consistent with derivation from depleted mantle which contains 4% veins of P-type melt.We propose a model for the evolution of the American-Antarctic Ridge lavas in which N-type MORB is derived from mantle with negligible to low vein/mantle ratios, T-type MORB is derived from domains with moderate and variable vein/mantle ratios and P-type MORB from regions with very high vein/mantle ratios where vein material comprises the major portion of the melt. The sparse occurrence of enriched lavas and by implication enriched mantle beneath the American-Antarctic Ridge, some distance (500–1,200 km) from the Bouvet plume location, is interpreted to be the result of lateral dispersion of enriched mantle domains by asthenospheric flow away from the Bouvet mantle plume towards the American-Antarctic Ridge.  相似文献   

20.
Sm-Nd and Rb-Sr isotopic analyses of charnockitic migmatite, augen gneiss, anorthosite-leuconorite and two acid plutons from the Rogaland and Vest-Agder districts of southwest Norway constrain their crustal residence ages, origin and evolution. The charnockitic migmatites, which are a major component of the metamorphic basement complex, represent the oldest and largest episode of accretion, in which new crust was derived 1.5–1.9 Ga ago from a mantle source of depleted Nd isotopic composition. The basement complex was intruded by a number of large anorthositic to granitic plutons during and after the Sveconorwegian orogenic period. Samples from the ca. 1050 Ma old, synorogenic Håland anorthosite-leuconorite massif exhibit substantial variation of initial Nd of +2.1 to +4.4 at an anorthosite locality and –0.5 to +2.3 at a leuconorite locality, but display significant variation of initial 87Sr/86Sr ratio only between the localities (anorthosite mean=0.70369, leuconorite mean=0.70560). A model is proposed whereby the anorthosite and leuconorite were derived by major crustal contamination of, and fractional crystallization from, a picritic magma derived from isotopically-depleted mantle. Two younger acid intrusions, the 950 Ma old Lyngdal granodiorite and the 930 Ma old Farsund charnockite, both have initial Sr and Nd isotope ratios consistent with massive contamination of depleted-mantle-derived magma by old continental crustal material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号