首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
春、秋季南黄海浮游纤毛虫丰度及生物量的分布差异   总被引:1,自引:0,他引:1  
Seasonal variation of marine plankton spatial distribution is important in understanding the biological processes in the ocean.In this study,we studied spatial distribution of planktonic ciliate abundance and biomass in the central deep area(station depth greater than 60 m) and the coastal shallow area(station depth less than 60 m) of the southern Yellow Sea(32°–36.5°N,121°–125°E) in spring(April) and autumn(October–November) of 2006.Our results showed that both ciliate abundance and biomass in the surface waters were higher in spring((1 490±2 336)ind./L;(4.11±7.81) μg/L) than in autumn((972±823) ind./L;(1.11±1.18) μg/L,calculated by carbon).Ciliate abundance and biomass in the surface waters of the coastal shallow area were similar in spring and autumn.However,in the central deep area,those values were much higher in spring((1 878±2 893) ind./L;(5.99±10.10)μg/L) than in autumn((738±373) ind./L;(0.74±0.76) μg/L).High values of ciliate abundance and biomass occurred in the central deep area in spring and in the coastal shallow area in autumn.Mixotrophic ciliate Laboea strobila was abundant in the central deep area in spring,when a phytoplankton bloom occurred.However,in autumn,L.strobila was abundant in the coastal shallow area.Boreal tintinnid Ptychocyli obtusa was found in spring.Both L.strobila and P.obtusa were concentrated in the surface waters when their abundance was more than 1 000 ind./L.Peaks of these species were in the subsurface waters when their abundance was less than 400 ind./L.This study showed that both high abundance and biomass of ciliates occurred in different areas in southern Yellow Sea seasonally.  相似文献   

2.
The accumulation and retention of 241Am by the pelagic tunicate Oikopleura dioica were examined using laboratory cultures and radiotracer methodology. Animals (i.e., trunks and tails) and discarded empty houses accumulated Am from seawater, giving volume/volume concentration factors of 59±8 and 10±1, respectively. The half-time for retention of Am in empty labelled houses transferred to non-contaminated seawater was 29 h; the retention half-time of Am in houses discarded by larvaceans feeding on Am-labelled diatoms was 219 h; the half-time of Am in fecal pellets produced by animals feeding on a monospecific diet of diatoms was 134 h, and 247 h for fecal pellets from animals fed a mixed diet. Approximately 30% of filtered cells remained in houses after the houses were discarded. Sinking rates of discarded houses and fecal pellets were found to vary with temperature and size, ranging from 26–157 m day?1 (house) and from 25–166 m day?1 (fecal pellets). The ubiquity and abundance of appendicularians, together with their prodigious production of houses (e.g., 10±2 houses day?1 at 17°C for each experimental animal) point to their potential significance in the vertical transport of Am, and probably other reactive metals, to intermediate depths in the ocean.  相似文献   

3.
Nematodes are the most abundant metazoans of deep-sea benthic communities, but knowledge of their distribution is limited relative to larger organisms. Whilst some aspects of nematode processing techniques, such as extraction, have been extensively studied, other key elements have attracted little attention. We compared the effect of (1) mesh size (63, 45, and 32 μm) on estimates of nematode abundance, biomass, and body size, and (2) microscope magnification (50× and 100×) on estimates of nematode abundance at bathyal sites (250–3100 m water depth) on the Challenger Plateau and Chatham Rise, south-west Pacific Ocean. Variation in the effectiveness of these techniques was assessed in relation to nematode body size and environmental parameters (water depth, sediment organic matter content, %silt/clay, and chloroplastic pigments). The 63-μm mesh retained a relatively low proportion of total nematode abundance (mean±SD=55±9%), but most of nematode biomass (90±4%). The proportion of nematode abundance retained on the 45-μm mesh in surface (0–1 cm) and subsurface (1–5 cm) sediment was significantly correlated (P<0.01) with %silt/clay (R2=0.39) and chloroplastic pigments (R2=0.29), respectively. Variation in median nematode body weight showed similar trends, but relationships between mean nematode body weight and environmental parameters were either relatively weak (subsurface sediment) or not significant (surface sediment). Using a low magnification led to significantly lower (on average by 43%) nematode abundance estimates relative to high magnification (P<0.001), and the magnitude of this difference was significantly correlated (P<0.05) with total nematode abundance (R2p=0.53) and the number of small (≤250 μm length) individuals (R2p=0.05). Our results suggest that organic matter input and sediment characteristics influence the abundance of small nematodes in bathyal communities. The abundance of small individuals can, in turn, influence abundance estimates obtained using different mesh sizes and microscope magnifications.  相似文献   

4.
We have developed new systems capable of profiling to >1000 m for measuring in situ pH and fugacity of CO2 (fCO2) in the ocean using spectrophotometric analysis (pH and CO2 profilers). The in situ pH is determined by detecting the color change of the pH indicator (m-cresol purple). It can withstand ambient pressure to 1000 m depth. The CO2 profiler analyzed in situ fCO2 by detecting the change of pH in an inner solution, equilibrated with the seawater through a gas permeable membrane. It can be operated to 2500 m depth. We used an amorphous fluoropolymer tubing form of AF-2400 for the gas permeable membrane due to its high gas permeability coefficients. The inner solution was a mixture of 2 μM bromocresol purple (BCP) and 5 μM sodium hydroxide. This system gave us a response time of 1 minute, which is twice as fast as previous systems. The precisions of pH and CO2 profilers were within 0.002 and 2.5% respectively. We have used these profilers to study the North Pacific, obtaining good agreement with the difference between the data from profilers and a discrete bottle of 0.002 ± 0.005 pH (SE, n = 25) and −0.4 ± 3 μatm (SE, n = 31).  相似文献   

5.
South African abalone Haliotis midae farms utilise large volumes of seawater (c. 500–1 500 l s–1) and produce relatively dilute effluents that are potentially suitable for the integrated culture of other species. To test this hypothesis, a marine finfish, silver kob Argyrosomus inodorus, and a detritivorous polychaete, bloodworm Arenicola loveni loveni, were cultured in abalone farm effluent and the results compared to controls reared in unused seawater. The silver kob were fed a nutritionally complete pelleted diet whereas the bloodworm were placed in shallow tanks with a low water velocity that allowed suspended organic solids to settle for the detritivorous worms to feed on. Silver kob growth rate (0.48% body weight d–1; SE = 0.01%), mortality (1.8 ± 0.5%), feed conversion ratio (3.0 ± 0.2) and protein efficiency ratio (1.0 ± 0.1) did not differ significantly between the effluent and control treatments. Bloodworm reared in abalone effluent grew well on the particulate organic waste matter in the effluent (0.39% body weight gain d–1; SE = 0.07%), whereas those in the seawater control lost weight at 0.19 ± 0.04% body weight d–1 over the experimental period. Bloodworm mortality did not differ significantly between effluent (6 ± 3%) and unused seawater (11 ± 8%) treatments. The faster growth of bloodworm in the abalone farm effluent was ascribed to the higher deposition rate of enriched organic solids (182 ± 56 g m–2 d–1) compared with those grown in the seawater control (46 ± 13 g m–2 d–1). It was concluded that abalone farm effluent is potentially suitable for the culture of both bloodworm and silver kob.  相似文献   

6.
杭州湾——舟山渔场秋季浮游植物现存量和初级生产力   总被引:17,自引:5,他引:17  
1995年9月在杭州湾和长江口至舟山海区进行了浮游植物细胞丰度、叶绿素a浓度和初级生产力的现场观测研究.结果表明,表层水浮游植物平均细胞丰度为(22.68±63.33)×104个/dm3;平均叶绿素a浓度为2.80±3.46μg/dm3,小于20μm的微型和微微型浮游生物细胞对叶绿素a的贡献占71%;平均初级生产力(C)为692.5±1192.4mg/(m2·d),小于20μm的微型和微微型浮游生物细胞对总生产力的贡献占68%.河口区悬浮物质浓度高,浮游植物光合作用受光的限制,各项生物参数与真光层深度紧密相关.生物锋区位于真光层深度10~20m、盐度26~32的长江冲淡水稀释区.同时探讨了浮游植物细胞活性(R)与光合作用同化数(AN)、叶绿素a与初级生产力、叶绿素a与海面光谱反射率的相互关系,为海洋水色遥感在初级生产力的应用研究提供科学依据  相似文献   

7.
Total arsenic, arsenate and arsenite concentration profiles for the water column of Saanich Inlet, an intermittently anoxic fjord located on Vancouver Island, B.C., Canada, were measured using independent analytical techniques for total arsenic and arsenic speciation to evaluate the accuracy of the speciation technique in both oxic and anoxic marine environments. Total arsenic profiles indicate a mid-depth minimum of about 1.0 ppb above the oxic—anoxic interface and an enrichment in the anoxic zone to about 2.0 ppb. This minimum may be due to either advection of arsenic-poor water into Saanich Inlet at mid-depth or arsenic incorporation onto solid phases within a bacteria- and manganese-rich particulate layer located immediately above the oxic—anoxic interface and subsequent removal via sinking particulate material. Ratios of total arsenic to phosphorus in the deep, anoxic waters of the basin are similar to those reported for marine algae, suggesting that the enrichment of total arsenic within the anoxic bottom layer may be due to its release upon organic matter decomposition.Arsenate and arsenite concentration versus depth profiles indicate a rapid (but incomplete in a thermodynamic sense) response to the oxic—anoxic interface. The arsenate/ arsenite concentration ratio is 15/1 in the oxic region of the water column and 1/12 in the anoxic zone. Arsenate—arsenite interconversion occurs at a depth shallower than ferric-ferrous but deeper than MnO2 —Mn2+ interconversions.Measurements of arsenite oxidation rates at near-ambient arsenite concentrations and temperatures using an 74As3+ radioactive tracer technique indicate that arsenite oxidation is initially ten times faster in seawater taken from the manganese-rich particulate layer at 165 m depth than in seawater collected near the surface at 50 m depth. Addition of antibiotics to seawater from 165 m depth initially suppressed the rate of arsenite oxidation, indicating that it may be partially microbially mediated.  相似文献   

8.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   

9.
采用MPN计数法对胶州湾大肠菌群丰度进行7年(84个月)连续监测,结果表明,大肠菌群丰度的周年变化明显,全年最高丰度与最低丰度相差约2.2倍。胶州湾大肠菌群丰度自2005—2009年明显下降,降幅达67%,说明胶州湾环境质量有所好转。研究还发现大肠菌群丰度变化具有明显的区域特征,河口区最高,湾内区最低,差异近11倍。大...  相似文献   

10.
珠江口异养细菌时空分布特征及其调控机制   总被引:2,自引:0,他引:2  
河口是海陆相互作用的重要地带, 往往呈现出独特的生物地球化学过程, 是研究碳循环过程的重要场所。在春季(2015年5月)、夏季(2015年8月)和冬季(2016年1月)分别对珠江口海域异养附生细菌和游离细菌时空分布及其各自高核酸(HNA)、低核酸(LNA)类群的相对贡献进行了调查研究, 并对其调控因子进行了相应探讨。结果表明, 珠江口异养细菌分布具有明显的时空差异。空间分布上, 珠江口异养细菌丰度自河口上游至下游呈递减趋势, 主要与上游污水输入以及珠江径流与高盐外海水在河口内的混合有关; 在雨季, 河口中下游盐度锋面区出现异养细菌丰度和叶绿素a质量浓度的高值区, 锋面区使营养物质停留时间增加, 促进浮游生物生长。垂直方向上, 表层异养细菌丰度略高于底层。时间尺度上, 异养细菌总丰度在春季最高(表层均值为2.94±1.23×109个 •L-1, 底层为2.81±1.50×109个 •L-1), 夏季次之(表层均值为2.32±0.43×109个 •L-1, 底层为1.90±0.50×109个 •L-1), 冬季最低(表层均值为1.06±0.33×109个 •L-1, 底层为9.76± 3.44×108个 •L-1)。珠江口海域异养细菌以附生细菌为主, 占异养细菌总丰度的16.56%~96.19%, 整体分布较稳定, 冬季最高(平均78.65%)、夏季(70.32%)与春季相近(68.17%)。附生细菌以代谢活跃的HNA类群为主, 游离细菌则主要以LNA类群为主, 代谢活性整体相对较低。  相似文献   

11.
This study examined whether heavy oil (HO) increases viral production and how that change may affect the marine bacterial community. The addition of a relatively low concentration (10 μg/mL) of HO to seawater resulted in the highest degree of viral lysis. Although the composition of the bacterial community did not change upon the viral lysis in terms of the taxa present, the relative abundance of the γ-Proteobacteria family Alteromonadaceae decreased (by 10 %) after the HO exposure, implying that the selective lysis by viruses and induced prophages may be responsible for changes in the composition of the bacterial community.  相似文献   

12.
We studied the characteristics of the phosphatase activity (Km and Vmax) in total seawater and in particulate material of the three main plankton classes (0.25-5, 5-90 and >90 microm) in a coastal marine ecosystem of Toulon Bay (French Mediterranean Sea). The measurement of the hydrolysis of sodium paranitrophenylphosphate (pNPP), a substrate of phosphatase, revealed low and high affinity components in unfiltered seawater and in particulate matter. In unfiltered seawater, the low affinity activity was predominant from October to March during phytoplankton development. The high affinity activity dominated from April to June and was significantly correlated with the bacterial abundances. The phosphatase behaviour in the particulate material differs from that in the unfiltered seawater. The activity of the three particulate classes was generally much lower than that of unfiltered seawater, particularly the low affinity activity. The >90 microm size fraction consisted in greater part of zooplankton. In this size class, the activity (nmol l(-1) h(-1)) of the low affinity component was predominant from May to August, when the abundance of the larvae of copepods (copepodites) was highest. Its high specific activity (Activity/Protein concentration as nmol l(-1) h(-1) microg(-1)) was particularly elevated during this period. The 5-90 microm fraction consisted of phytoplankton cells, especially Dinoflagellates. Between September and January, the activity (nmol l(-1) h(-1)) of this size class was mostly supported by the low affinity component. The specific activity (nmol l(-1) h(-1) microg(-1)) of the high affinity component was highest in June and August. No significant correlation was found between phosphatase activities and chlorophyll a or total cell abundance. In return temporary relationships with specific taxa exist in particular with Ceratium spp., Gymnodinium spp. and Protoperidinium spp. The contribution of the 0.25-5 microm size class exceeded rarely 20% of the total particulate activity. Between June and August, high specific activities (nmol l(-1) h(-1) microg(-1)) were observed for its high affinity component. In autumn, strong rainfall increased the phosphate and nitrate concentrations and led to a drop in salinity, which probably explains the low phosphatase activities (nmol l(-1) h(-1)) and cell densities observed during this period.  相似文献   

13.
Gorgonians are important structuring species of the Mediterranean hard‐bottom communities that are threatened by disturbances such as increasing seawater temperature, mucilaginous events and destructive fishing, among others. In this study we assessed for the first time the population structure and conservation status of one of the most common gorgonians in the Eastern Adriatic Sea, the red gorgonian Paramuricea clavata. During late spring 2009, nine populations dwelling between 30 and 50 m depth were examined by SCUBA diving along 200 km of the Croatian coastline. The density ranged between 7 and 20 colonies·m?2. The mean and maximum colony heights were 31.2 ± 22.7 cm (±SD) and 138 cm, respectively. Two main patterns of P. clavata size frequency distributions were observed: the first one with a higher proportion of juveniles (~30%) observed mostly in the northernmost populations, and the second one with a higher proportion of larger colonies (>25% of colonies >40 cm in height). Regarding the disturbance impact level, the proportion of healthy colonies (with <10% of injured surface) was high in almost all of the studied populations (>60%) and the mean extent of injury (i.e. denuded axis or epibiosis) was 9.7 ± 4% (±SD), indicating low impacts. Contrasting population size structures with high recruitment in mature populations provides new insights into the demographic structure of the Mediterranean gorgonian forests dwelling in their upper bathymetric range (<50 m depth). Furthermore, these size structures and the low impact levels suggest a current favorable conservation status of the studied populations in the Eastern Adriatic Sea and provide a baseline for their monitoring in the future.  相似文献   

14.
Sinking particulate matter were obtained from twelve depths using free-drifting sediment trap arrays which were deployed in the upper 2,000 m water column of the Izu Trench, northwest Pacific Ocean. The largest flux of 146 mgC m–2 day–1 was observed at 150 m depth. The flux generally decreased with depth below the maximum, however, minor flux peaks occurred at 1,000 and 1,250 m depth (>30 mgC m–2 day–1). Sinking large particles (>100 µm) were composed of fecal pellets typical of crustaceans, macroscopic aggregates, and planktonic organisms and their fragments. Three major components constituted 19%, 20% and 29%, respectively, of the total carbon flux (averaged from the fluxes at five depths; 50, 100, 150, 1,000 and 2,000 m). Among them, fecal pellet flux and large organism flux were well correlated with the total flux. The close correspondence between the fecal flux and the total carbon flux suggests that the latter is derived from a group of variables including other biogenic matter, among which fecal pellet is one of the leading factors controlling total flux, though the latter is only a minor covariable in quantity. Vertical flux profiles of fecal pellets and their internal constituents revealed some new inputs of feces occurring through the water column. This phenomenon implies that downward transportation of organic material is characterized by feeding and egestion activities of zooplankton, including overlapping processes of sinking and dispersion of large fecal particles and repackaging of dispersed small particles.  相似文献   

15.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

16.
17.
Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.  相似文献   

18.
Phytoplankton and its relationships with physical and chemical variables were analysed over a 2-year period in Hueihue and Linao Bays (southern Chile). Samples were collected on a monthly basis from May 1991 to May 1993. The growth rate of a single stock of hatchery-produced oysters (Ostrea chilensis) distributed between these two bays was also monitored monthly. The growth rate of oysters maintained at Linao Bay (site associated with a fish farm) was significantly higher, at every depth, compared with the oysters maintained at Hueihue Bay. Temperature and salinity values and their annual fluctuations were similar at both locations, presenting higher variations at the surface (1 m) due to the influence of air temperature and local precipitation than at depth. However, significant differences in phytoplankton abundance and composition were found between the two locations. The phytoplankton community was characterized by high biomass values during spring and summer, the dominance of diatoms and an inverse relationship between temperature and species diversity. However, phytoplankton cell abundance, biovolume and chlorophyll a concentration were significantly higher at Linao at every depth sampled. Cell abundance ranged between 4.49 × 104 and 7.45 × 106 cells · l?1 in Hueihue and between 6.48 × 104 and 8.71 × 106 cells ·1?1 in Linao. The influence of temperature on chlorophyll a concentration was significant except at 8 m at both locations. The instantaneous oyster growth rate was found to be positively correlated with temperature, chlorophyll a concentration and particulate organic matter at both locations. A significant negative relationship between oyster growth and amount of particulate inorganic matter was found; this confirms the important role played by seston composition in oyster growth. The demonstration of variation in oyster growth rate associated with differences in food availability between the two locations provides insight into the ecological role played by fish farms in southern Chile. The results suggest a strong link between food availability and oyster growth.  相似文献   

19.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

20.
We examined the contribution of submarine groundwater discharge (SGD) to nutrient budgets in Hwasun Bay, Jeju Island, Korea in August 2009, October 2014, and May 2015. The concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in fresh groundwater were in the range of 285?716 μM and 2.3?3.2 μM, respectively, which were each 1?2 orders of magnitude higher than those in the bay seawater. The outer-bay seawater flowing into the bay was oligotrophic (2.9 ± 1.9 μM for DIN and 0.2 ± 0.3 μM for DIP). Nutrient budget calculations were performed for each season by accounting for submarine fresh groundwater discharge (SFGD) and water residence times. In August 2009 (DIN = 1.8 μM and DIN:DIP ratio = 4.6 for the outerbay water), DIN inputs from SFGD accounted for approximately 40% of the DIN inventory in the bay seawater. In October 2014 (DIN = 1.1 μM and DIP < 0.05 μM for the outer-bay water), DIP from SFGD accounted for approximately 100% of the DIP inventory in the bay seawater. In May 2015, mean concentrations of DIN and DIP in the bay seawater were 8.6 ± 12 μM and 0.11 ± 0.04 μM, respectively, with conservative behaviors in the bay seawater in association with excessive groundwater inputs. These results imply that SGD plays a critical but different role in nutrient budgets and stoichiometry in coastal waters off a volcanic island depending on open-ocean nutrient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号