首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The year 1999 was an exceptionally wet year, with severe floods in China, India and Australia and very high flow in the Nile. In Sudan, the July rainfall was unusually early and heavy, and persistent rains throughout August and early September caused severe floods in much of central Sudan, including Khartoum.The synoptic conditions historically associated with extreme rainfall events in central Sudan include a warm equatorial Indian Ocean, a strong summer monsoon over both Africa and India, a northward shift of the Inter-tropical Convergence Zone earlier and further north than usual, and the presence of deep, well-developed westerly air masses accompanied by a strong Tropical Easterly Jet that allowed more moisture transport into Africa from the South Atlantic via the Congo basin, leading to very heavy precipitation in the Ethiopian uplands and the central Sudan.The intense late wet season rains in 1999 caused a major canal in the Gezira Irrigation Area to break its banks and filled normally dry depressions between dunes with water, providing a partial analogue of early Holocene environments in this region when small groups of Later Stone Age peoples occupied the sandy ridges seasonally. Global Circulation Models cannot provide such detailed local information.  相似文献   

2.
In order to understand the hydrothermal activity mechanism of active layers to rainfall in permafrost regions caused by humidification of climate, the differences of ground surface energy balance and hydrothermal activity in different types of shallow soil with the consideration of rainfall were discussed. Based on the meteorological data in 2013 observed at Beiluhe observation station of Tibet Plateau, three types of shallow ground soil (i.e., sandy soil, sandy loam and silty clay) were selected to compare the differences in the water content and energy balance at the ground surface, dynamic processes of water and energy transport in active layers and coupling mechanism under rainfall condition in the plateau using a coupled water-vapor-heat transport model. The results show that the increase of soil particle size leads to the increase of surface net radiation and latent heat of evaporation, but the decrease of soil heat flux. The difference of surface energy balance, especially the sensible heat flux and latent heat of evaporation, are larger in the warm season but smaller in the cold season. The liquid water transport under hydraulic gradient and the water-vapor transport under thermal gradient are obvious as the particle size in soil increases. However, the water-vapor flux under thermal gradient increases but the liquid water flux under hydraulic potential gradient decreases. As a result, the water content in shallow soil decreases accordingly but it increases slightly at the depth of 25 ~75 cm. Moreover, with the increase of soil particle size, the thermal conductivity of soil, convective heat transfer under rainfall and surface evaporation increase, but the soil heat conduction flux and soil temperature gradient decrease. Thus, soil temperature in sandy soil is much higher than that of sandy loam and silty clay at the same depth. The permafrost table declines with the increase of the thickness of active layer, which is unfavourable to permafrost stability. The results can provide theoretical reference for stability prediction and protection of permafrost caused by humidification of climate.  相似文献   

3.
Africa is the most important source of dust in the world today, and dust storms are frequent on the nearby Canary Islands. Previous workers have inferred that the Sahara is the most important source of dust to Canary Islands soils, with little contribution from the Sahel region. Soils overlying a late Quaternary basalt flow on Lanzarote, Canary Islands, contain, in addition to volcanic minerals, quartz and mica, exotic to the island’s bedrock. Kaolinite in the soils also likely has an exotic origin. Trace‐element geochemistry shows that the soils are derived from varying proportions of locally derived basalt and African dust. Major‐element geochemistry, clay mineralogy and interpretation of satellite imagery suggest that dust additions to the Canary Islands come not only from the Sahara Desert, but also from the Sahel region.  相似文献   

4.
We present hafnium (Hf) and neodymium (Nd) isotopic compositions and concentrations in surface waters of the eastern Atlantic Ocean between the coast of Spain and South-Africa. These data are complemented by Hf and Nd isotopic and concentration data, as well as rare earth element (REE) concentrations, in Saharan dust.Hafnium concentrations range between a maximum of 0.52 pmol/kg in the area of the Canary Islands and a minimum value of 0.08 pmol/kg in the southern Angola Basin. Neodymium concentrations also show a local maximum in the area of the Canary Islands (26 pmol/kg) but are even higher between ∼20°N and ∼4°N reaching maximum concentrations of 35 pmol/kg. These elevated concentrations provide evidence of inputs from weathering of the Canary Islands and from the partial dissolution of dust from the Sahara/Sahel region. The inputs from ocean island weathering are also reflected in radiogenic Hf and Nd isotopes.The Hf isotopic compositions of dust samples themselves are highly variable, ranging between εHf = −20 and −0.6. The combined Hf and Nd isotopic compositions of dust plot close to the “terrestrial array” during periods of appreciable dust load in the atmosphere. During low atmospheric dust loading combined Hf and Nd isotopic compositions similar to seawater are observed. Most of the variability can be explained in terms of variable degrees of zircon loss from the dust samples, which in turn is linked to sorting during atmospheric transport to the eastern Atlantic Ocean and possibly presorting by sedimentary redistribution on the continent. In addition, increasing relative proportions of radiogenic clay minerals with decreasing grain size may contribute to the radiogenic Hf isotopic compositions observed.While the Nd isotopic composition in the surface ocean reflects the Nd isotopic composition of the Saharan dust adjacent to the Sahara/Sahel region, the release of Hf from that dust appears to be incongruent and results in surface ocean Hf isotopic compositions which are ∼10 εHf more radiogenic than the bulk dust. Radiogenic Hf appears to be released from clays and possibly from trace apatite. Rare earth element patterns of dust samples indicate the presence of apatite but provide no evidence for ferromanganese grain coatings, suggesting that such coatings are insignificant in the release of Hf and Nd from Saharan dust to the surface ocean.The Nd isotopic composition of the surface waters becomes less radiogenic south of the equator, most likely reflecting the release of Nd from Congo river sediments. The release of Hf from Saharan dust and the Congo river sediments, however, does not produce distinct Hf isotopic signatures in the surface ocean, implying that the mobile fraction of Hf integrated over large continental areas is isotopically uniform. The Hf isotopic uniformity in the surface ocean means that the limited variability in deep water isotopic compositions is consistent with a short deep water residence time and reflects homogenous continental inputs rather than efficient deep water homogenization.  相似文献   

5.
在温度场、湿度场和人工水渠等多场耦合作用下,土体与外界环境的热交换条件和水热输运过程的改变极易引起土体成分和结构的变异,从而引发区域的生态失衡和次生盐渍化。本文选择吉林西部的农安、大安、乾安和镇赉4个典型盐渍化地区作为长期观测和研究评价的地点,对多场(水、热、盐)循环条件下不同盖层盐渍土进行现场调查取样,对室外内的工程地质性质、物理化学性质和物质组成进行了长期观测和测试分析。结果表明:吉林西部盐渍土属于碳酸型盐渍土,水分迁移量为3.5%4.6%;易溶盐质量分数总体随深度增加而降低,并且盐水在剖面上的分布明显受到季节影响,旱季蒸发作用和冬季土体冻结作用促使盐分随水分向上运移,浅表土体盐分大量集聚;随深度增加,阳离子交换量的变化趋势基本与易溶盐质量分数变化的趋势相同。  相似文献   

6.
Reservoir regulation and local climate both affect the heat budget of tributary bay. It is difficult for traditional methods to identify the influence of different factors on heat budget quantitatively. In this paper, for analysis of the control mechanisms of the heat budget of a large reservoir tributary, the water temperature distribution, and heat budget processes of the Meixi River, a typical tributary to the Three Gorges Reservoir was measured, and a new method was used to calculate the heat content composition of the tributary bay and identify the key factor of the heat balance. The result shows significant variation in the spatial and temporal distributions of water temperatures in the Meixi River, ranging from 12.4 to 28.9 °C on the surface and 12.0 to 24.4 °C at the bottom. The total heat exchange across the air–water interface that ranges from 0.1 to 6% of the budget is not the primary control factor of the annual tributary heat budget. Rather, the change in water depth produced by regulation of the Three Gorges Reservoir is the primary control factor of the tributary heat budget in the whole year, which ranges from 72 to 99% of the budget. The water temperature difference between the main stream and tributary is the not key factor of the heat budget, which ranges from 0.1 to 28% of the heat budget.  相似文献   

7.
利用2014年4月22日-23日高空、地面、区域自动气象站加密观测和1°×1°NCEP/NCAR再分析资料,分析4月23日南疆翻山型强沙尘暴天气的高低空环流及动力结构特征。结果表明:巴尔喀什湖低槽引导极地干冷空气爆发性南下进入南疆,造成4×10-2h Pa·km-1剧烈的气压梯度和地面冷锋,引发了大风、强沙尘暴,盆地中尺度低压辐合使尉犁加强为"黑风";300 h Pa极锋急流快速南下至南疆盆地,动量下传形成低空急流,高低空急流是此次强沙尘暴形成的动力条件;急流附近高空辐散、低层辐合及层结不稳定,有利于沙尘暴发生。本次强沙尘暴动力结构特征:干冷与干暖空气剧烈交绥,激发热力不稳定,产生热力对流;高空辐散、低层辐合与高低空急流、地面冷锋配合,加强上升运动,使地面沙尘卷入空中并输送;高低空急流抽吸加强冷暖空气垂直运动,位能向动能转化,引起了地面大风,驱动沙尘暴发生。  相似文献   

8.
《Quaternary Science Reviews》2003,22(18-19):2007-2035
Dust raising and transport are common and important processes in Australia today. The aridity of the Australian continent and high climatic variability result in widespread dust raising in the arid and semi-arid areas and transport to the humid margins and surrounding oceans. The supply of erodible particles appears to be the greatest limitation on total flux of transported dust. Dust raising is greatest in the Lake Eyre Basin, including the Simpson Desert, and Murray-Darling Basin where internal drainage renews supplies of fine particles to the arid zone. In the west and northwest dust entrainment is low, despite considerable aridity. The marine record of dust flux shows at least a threefold increase in dust flux, compared with the Holocene, in the last glacial maximum in both tropical and temperate Australia, driven by weakened Australian monsoon rains and drier westerly circulation, respectively. Despite the widespread confirmation of aeolian dust deposits in southeastern and southwestern Australia, dated or quantified records are extremely rare. The dominant model of Australian dust deposits, the clay-rich ‘parna’, is shown to be poorly substantiated while modern and ancient dust deposits examined in detail are shown to bear a strong similarity to conventional definitions of loess.  相似文献   

9.
孔海江  王霄  王蕊  吕晓娜 《水文》2012,(4):37-43
通过分析1961~2010年发生在河南中南部持续性暴雨的水汽输送特征,从水汽输送角度对河南省中南部(河南省黄河以南地区)的持续性暴雨进行分型,总结出3种水汽输送类型,即西南气流型、螺旋型和"S"型。对比分析这3种类型代表个例的水汽输送和水汽收支特征后发现,河南中南部的持续性暴雨主要是由西南气流型的水汽输送造成的;"S"型和螺旋型水汽输送也是造成河南中南部持续性暴雨的原因之一。西南气流型和螺旋型的水汽输送是造成淮河上游洪涝的主要水汽输送类型,其对应的天气影响系统分别是:高层低槽(低涡)、中低层切变线和台风低压(台风倒槽)。  相似文献   

10.
Performances of the 24 Coupled Model Intercomparison Project Phase 5 (CMIP5) models in simulating the Wyrtki Jet over the tropical Indian Ocean are evaluated, and the results show large diversity in the simulated current intensity at seasonal timescale. These coupled models are able to capture the dominant spatial distribution of observed Wyrtki Jet, the central equatorial region. The simulated seasonal variations of Wyrtki Jet are also reproduced quantitatively, though the simulated amplitudes from CMIP5 models are quite spread among the CMIP5 models. Compared with the observation, some coupled models are not able to present the evolution of Wyrtki Jet in fall season and the decay phase has been postponed 1 month later. Further diagnostic illustrates that the simulated surface zonal wind has remarkable impact on the evolution of Wyrtki Jet in fall season over the tropical Indian Ocean. This study also points out that there is a common problem in these models that most of them present 1-month delayed Wyrtki Jets peak time than the normal climatological condition along the center equatorial Indian Ocean.  相似文献   

11.
Surface conditions, such as surface roughness and soil moisture, control wind erosion and dust emission in northeast Asia. Data on spatial and temporal changes of surface soil water content are needed for dust-modeling systems used to predict dust events with the aim of preventing damage from them. A modified temperature-vegetation dryness index (MTVDI) was tested to see if it could reproduce surface soil water contents measured during the dust event season in Bayan Unjuul, Mongolia, and Shenmu, China. MTVDI was calculated from land surface temperature and aerodynamic minimum and maximum surface temperatures estimated from meteorological data. The standard deviation of the error of estimations of soil water content from MTVDI was ±1.5% in Bayan Unjuul when soil water content was lower than 4%. This compares favorably with the observational error of ±1% of the soil moisture sensors used.  相似文献   

12.
地下水蒸发是旱区地下水均衡计算中重要的排泄项之一。由于包气带水分运移高度非线性且大气—地表界面动力学过程复杂,估算潜水蒸发量一直是地下水资源评价的难题之一。利用内蒙古乌审旗河南乡均衡试验场E601型蒸渗仪,建立了毛乌素沙地水面蒸发及4种典型岩性(风化砂岩K1、萨拉乌苏组砂Qpal+l、砂质壤土Qhl、风积沙Qheol)的饱和土蒸发原位试验,结合长期观测获取的大量数据,开展了地下水蒸发与水面蒸发、埋深的关系和地下水蒸发量计算方法研究。结果表明:(1)4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)饱和蒸发量与水面蒸发量比值分别为0.60,0.77,0.47,0.88,表明不同岩性的饱和裸土的蒸发强度不等于自由水面的蒸发强度;实际计算裸土蒸发强度时,不能以自由水面蒸发强度作为参考点,如果运用,必须校正。(2)利用蒸渗仪观测数据和土壤水运动方程稳态解析解,获得4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水稳定蒸发计算的关键经验系数c,分别为628932.63,165058.71,48948.21,1525104.031 m?2。(3)利用稳定蒸发公式确定鄂尔多斯盆地风沙滩区四种典型包气带岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水极限蒸发深度约为60 cm,结果得到了室内非稳态蒸发试验的佐证,为研究区水资源评价提供了重要的参数依据。  相似文献   

13.
In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30‡E-120‡E, 30‡S30‡N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student’s t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2 m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2 m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered as an advance indicator of the possible behavior of the subsequent monsoon season. The distribution of net heat flux is predominantly negative over eastern Arabian Sea, Bay of Bengal and Indian Ocean. Anomaly between the two extreme monsoon years in post 1980 (i.e., 1988 and 1987) shows that shortwave flux, latent heat flux and net heat flux indicate reversal in sign, particularly in south Indian Ocean. Variations of the heat budget components over four smaller sectors of Indian seas, namely Arabian Sea, Bay of Bengal and west Indian Ocean and east Indian Ocean show that a small sector of Arabian Sea is most dominant during May and other sectors showing reversal in sign of latent heat flux during monsoon season.  相似文献   

14.
蒸发皿中水面蒸发氢氧同位素分馏的实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
气象要素与蒸发密切相关,通过室内外不同气象条件下的器皿水蒸发实验,获得了水面蒸发氢氧稳定同位素分馏因子与气象要素的关系。实验结果表明,随着蒸发的进行,剩余水体中逐渐富集重同位素;自由水体蒸发同位素分馏在垂线上有分层现象,表层水体同位素值比垂线平均的同位素值略富集;不同温度条件下的室内蒸发实验中,温度越高,液-气间分馏系数越小,相应于同一剩余水体体积比,剩余水体稳定同位素值则越低。室外器皿水自由蒸发实验中得出的蒸发线方程斜率较大地偏离了当地降水线,表明实验期间水体蒸发分馏作用较明显。该研究为进一步揭示水体蒸发分馏规律提供了可靠的实验依据。  相似文献   

15.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

16.
It is generally difficult to quantify exactly the freshwater going in or out of the coastal watersheds along the northern Adriatic Sea because, on one hand, excess water is drained and pumped into the sea to prevent flooding but, on the other hand, water is brought onto the land from far away for irrigation. Fragmentation of water authorities makes it difficult to collect all the necessary information. Climate change and increasing salinization of the coastal aquifers make it imperative, however, to better know the quantities of freshwater involved in these small basins. The water budget of a small coastal agricultural watershed along the Adriatic Sea in Italy (The Quinto Basin near Ravenna) is presented here considering different land uses. The evaporation of open water and the evapotranspiration of wetlands, pine forests, bare soil and irrigated agriculture are calculated based on the Penman–Monteith equation and the Cropwat program. The current water budget is based on average climate data from 1989 to 2008 and drainage and irrigation data. Predictions for future evapotranspiration, net irrigation and hydrologic deficit are calculated with climate data from IPCC (The Fourth Assessment Report (AR4) 200, Climate change 2007). From the study results, the soil type may determine whether or not a crop will need more or less irrigation in the future. Regulations on land use should therefore consider which crop type can be grown on a specific soil type. Water budget analysis in scenarios A1b and A2 both show an increase of water deficits in the summer and an increase of water surplus in the winter. This is explained by the fact that a larger percentage of the rain will fall in winter and not during the growth season. The open water evaporation will decrease under future climate scenarios as a result of increased relative humidity in winter and decreased wind velocity. This may have a positive effect on the water cycle. The current irrigation is very abundant, but has beneficial effects in contrasting soil salinization and saltwater intrusion into the coastal aquifer.  相似文献   

17.
An extreme heat wave hit Egypt in summer 2015. Abnormal hot weather conditions existed over Egypt for the entire summer season. The present paper investigates the relationship between the intertropical convergence zone (ITCZ) over Africa and a scorching heat wave that existed over Egypt in summer 2015. The National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data of mean surface air temperature for the domain of Egypt for the summer season from 1948 to 2015 were used in this study. In addition, data of the daily maximum and daily minimum temperature used for the summer season of the year 2015 were also used. Time cross-section analysis of the daily operational data of geopotential height at level 500 hPa over Egypt from 1 June to 31 August 2015 was done. Moreover, the African ITCZ, both the western and the eastern ITCZ, data for summer of 2015 were used for the said period. The time series, time cross-section, anomaly, and correlation coefficient techniques were used to analyze the datasets. The results revealed that a new climate change record of heat wave over Egypt existed in summer 2015. Moreover, there is an outstanding significant positive correlation between the abrupt shift of African ITCZ position and heat wave occurrence over Egypt in summer 2015. In particular, the southerly movement of the eastern African ITCZ controls the weather over Egypt and led to the extreme heat wave in summer 2015.  相似文献   

18.
Surface processes play an important role in the simulation of desertification and climate change. The present study shows that enhancement of evaporation at a given place is due to surface temperature and wetness inhomogeneities compared to its surroundings. Between any adjacent dry and wet strips the induced advective heat transport changes the available net radiation between sensible and latent heat fluxes. It also accommodates a redistribution of surface energy between two adjacent inhomogeneous surface strips. A combined model of Tarpley (1994) and Ya Guo and Schuepp (1994) about the advective heat transport over dry and wet strips has been tested over Andhra Pradesh. Taking the Ananthpur district as a relatively drier region, the induced transport over the rest of the districts is estimated. This study has been done for two monsoon seasons of 1990 and 1991. Attempts are made to identify an indexing criteria based on this study to estimate the magnitude of the heat transport.  相似文献   

19.
沙尘气溶胶与气候变化   总被引:17,自引:2,他引:15  
沙尘气溶胶通过吸收和散射太阳辐射与长波辐射影响地球辐射收支和能量平衡,从而影响气候变化。另一方面,气候变化,土地利用、沙漠化和城市化等人类活动都是可能导致大气中矿物沙尘气溶胶的改变。沙尘气溶胶在全球及区域尺度气候和环境变化中起着十分重要的作用。  相似文献   

20.
The Caohai Wetland serves as an important ecosystem on the Yunnan–Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ18O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from ?97.13 to ?41.73‰ for δD and from ?13.17 to ?4.70‰ for δ18O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ18O in the more open water with dead aquatic vegetation ranged from ?37.11 to ?11.77‰, and from ?4.25 to ?0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号