首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
—?We study the filling of horizontal cracks with constant aperture driven by capillary forces. The physical model of the crack consists of a narrow gap between two flat glass plates (Hele-Shaw cell). The liquid enters the gap through a hole in the bottom plate. The flow is driven purely by the force acting on the contact lines between solid, liquid, and gas. We developed a theoretical model for this type of flow on the basis of Darcy's law; it allows for the consideration of different surface conditions.¶We run the experiment for two surface conditions: Surfaces boiled in hydrogen peroxide to remove initial contamination, and surfaces contaminated with 2-propanol after boiling in hydrogen peroxide. The flow rate depends on the gap aperture and on the interaction of the liquid with the air and the solid surfaces: The smaller the aperture, the lower the flow rate due to viscous resistance of the liquid. The flow rate is also reduced when the glass surfaces are contaminated with 2-propanol. The contact line force per unit length is approximately 60% higher on clean glass surfaces than it is on glass surfaces with the 2-propanol contamination. These experimental results are in agreement with our theoretical model and are confirmed by independent measurements of the liquid-solid interaction in capillary rise experiments under static conditions with the same Hele-Shaw cell.¶Another aspect of this study is the distribution of the liquid for the different surface conditions. The overall shape is a circular disk, as assumed in the theoretical model. However, a pronounced contact line roughness develops in case of the surfaces contaminated with 2-propanol, and air bubbles are trapped behind the contact line. A further analysis of the flow regime using the capillary number and the ratio of the viscosities of the involved fluids (water and air) reveals that the experiments take place in the transition zone between stable displacement and capillary fingering, i.e., neither viscous nor capillary fingers develop under the conditions of the experiment. The contact line roughness and the trapped air bubbles in the contaminated cell reflect local inhomogeneities of the surface wettability.  相似文献   

2.
The effect of surface phenomena occurring at the interfaces between immiscible fluids and a solid on the seismic attributes of partially saturated rocks has not yet been fully studied. Meanwhile, over the past two decades considerable progress has been made in the physics of wetting to understand effects such as contact line friction, contact line pinning, contact angle hysteresis, and equilibrium contact angle. In this paper, we developed a new rock physics model considering the aforementioned effects on seismic properties of the rock with a partially saturated plane-strain crack. We demonstrated that for small wave-induced stress perturbations, the contact line of the interface meniscus will remain pinned, while the meniscus will bulge and change its shape through the change of the contact angles. When the stress perturbation is larger than a critical value, the contact line will move with advancing or receding contact angle depending on the direction of contact line motion. A critical stress perturbation predicted by our model can be in the range of ∼102−104 Pa, that is typical for linear seismic waves. Our model predicts strong seismic attenuation in the case when the contact line is moving. When the contact line is pinned, the attenuation is negligibly small. Seismic attenuation is associated with the hysteresis of loading and unloading bulk moduli, predicted by our model. The hysteresis is large when the contact line is moving and negligibly small when the contact line is pinned. Furthermore, we demonstrate that the bulk modulus of the rock with a partially saturated crack depends also on the surface tension and on the contact angle hysteresis. These parameters are typically neglected during calculation of the effecting fluid moduli by applying different averaging techniques. We demonstrate that contact line friction may be a dominant seismic attenuation mechanism in the low frequency limit (<∼10 Hz) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow.  相似文献   

3.
Surface‐wetting properties are an important cause of changing the groundwater and two‐phase fluid flows. Various factors affecting the surface wettability were investigated in a parallel‐walled glass fracture with non‐aqueous phase liquid (NAPL) (gasoline, diesel, trichloroethylene, and creosote) wetted surfaces. First, the effect of the duration of NAPL exposure on wettability change was considered at pre‐wet fracture surfaces using the various NAPL species, and the result showed that the surface became hydrophobic after the exposure time of NAPL exceeded 2000 min. Second, the initial wetting state of the surface affected the timing when the wettability change begins as well as the extent of the wettability change in an NAPL‐wetted rock fractures. Under the dry condition, the wettability change was completed within a very short time of exposure to NAPL (~5 min), and then it finally reached the intermediate and weakly NAPL wetting (contact angle of 118°). Under the pre‐wet condition, a relatively long time of exposure (~5000 min) was needed to observe the obvious change of the surface wettability, which was changed up to strongly NAPL wetting (contact angle of 142°). Third, the wettability changed by NAPL exposure was stable and maintained for a long time, regardless of water flushing rate and temperature. Finally, the wettability change by the exposure of NAPL on parallel fracture surfaces was evaluated at various groundwater flow velocities. Result showed that groundwater flow velocity has an important impact upon measured contact angle. Although fracture surfaces were exposed to NAPL at the low groundwater flow velocity, the wettability was not changed from hydrophilic to hydrophobic when the contact time between NAPL and mineral surfaces was not sufficient owing to the pulse‐type movement of NAPL. This implies that the variation of exposure pattern due to groundwater flow on the wettability change can be an important factor affecting the wettability change of fracture surface and migration behaviour at natural fractured rock aquifers in case of NAPL spill. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach.  相似文献   

5.
Organic solvent (i.e., dense nonaqueous phase liquid, DNAPL) migration in the subsurface is known to be extremely sensitive to geologic heterogeneity. There is often a focus on heterogeneity that results from changing depositional conditions over short spatial scales. Similar or even more extreme spatial heterogeneity can result postdeposition due to erosional processes. This study applies a synergistic approach based on a combination of high‐resolution lithologic logs of continuous cores, borehole geophysical logs, surface electrical resistivity, and seismic refraction tomography models to assess spatial heterogeneity in a shallow bedrock sequence subject to multiple unconformities and contaminated with a mixture of organic chemicals. The persistence of DNAPL in the source zone and an associated dissolved‐phase plume led to variable impacts on formation resistivity across the study site. Seismic refraction in combination with electrical resistivity tomography improved interpretation of highly irregular erosional boundaries by delineating sharp lateral transitions in lithologic composition near the source zone and across the dissolved‐phase plume. Electrical resistivity was effective at differentiating between clean and mud‐rich sandstones and their unconformable contact with an underlying dolostone. Geophysical measurements revealed eroded dolostone mounds encased by a network of younger mud‐rich sandstones channelized by clean semi‐lithified sand, all of which was buried beneath variable glacial drift. Our synergistic multidimensional approach resulted in the development of a detailed three‐dimensional shallow bedrock geospatial model, which has led to an improved understanding of DNAPL migration and contaminant plume heterogeneity.  相似文献   

6.
Clays and clay‐bearing rocks like shale are extremely water sensitive. This is partly due to the interaction between water and mineral surfaces, strengthened by the presence of nanometer‐size pores and related large specific surface areas. Molecular‐scale numerical simulations, using a discrete‐element model, show that shear rigidity can be associated with structurally ordered (bound or adsorbed) water near charged surfaces. Building on these and other molecular dynamics simulations plus nanoscale experiments from the literature, the water monolayer adjacent to hydrophilic solid surfaces appears to be characterised by shear stiffness and/or enhanced viscosity. In both cases, elastic wave propagation will be affected by the bound or adsorbed water. Using a simple rock physics model, bound water properties were adjusted to match laboratory measured P‐ and S‐wave velocities on pure water‐saturated kaolinite and smectite. To fit the measured stress sensitivity, particularly for kaolinite, the contribution from solid‐grain contact stiffness needs to be added. The model predicts, particularly for S‐waves, that viscoelastic bound water could be a source of dispersion in clay and clay‐rich rocks. The bound‐water‐based rock physics model is found to represent a lower bound to laboratory‐measured velocities obtained with shales of different mineralogy and porosity levels.  相似文献   

7.
Magnetic resonance sounding: new method for ground water assessment   总被引:1,自引:0,他引:1  
Lubczynski M  Roy J 《Ground water》2004,42(2):291-309
  相似文献   

8.
Sub-Saharan Africa faces significant challenges in dealing with ground water pollution. These countries can look to successes and missteps on other continents to help choose their own individual paths to ensuring reliable and clean supplies of ground water. In the large view, sub-Saharan Africa can define specific levels of acceptable risk in water quality that drive cleanup efforts and are amenable to acceptance across national and geographic boundaries. Ground water quality databases must be expanded, and data must be available in an electronic form that is flexible, expandable, and uniform, and that can be used over wide geographic areas. Guidance from other continents is available on well construction, sampling and monitoring, interim remediation, technical impracticability, monitored natural attenuation, and many specific issues such as how to deal with small waste generators and septic contamination of water supply wells. It is important to establish a common African view on the appropriateness of other nations’ ground water quality guidance for African issues, economic conditions, and community circumstances. Establishing numerical, concentration-based, water quality action levels for pollutants in ground water, which many neighboring African nations could hold comparable, would set the stage for risk-based remediation of contaminated sites. Efforts to gain public, grass-roots understanding and support for stable and balanced enforcement of standards are also key. Finally, effective capacity building in the region could be an eventual solution to ground water quality problems; with increased numbers of trained environmental professionals, ground water throughout the region can be protected and contaminated sites cleaned up.  相似文献   

9.
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water.
Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.  相似文献   

10.
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert -butyl ether (MTBE), tert -butyl alcohol (TBA), and tert -amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U-14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.  相似文献   

11.
Conventional electrical prospecting can be extended to the search for deep-seated hydrocarbon deposits, by using the steel casings of drill-holes as vertical line sources. These sources produce at depth a density of current higher than the density created by point sources located at the ground surface. Several tests have shown that the contrast of conductivity between resistive hydrocarbon deposits and the surrounding salt water produces relevant anomalies on a resistivity map obtained with vertical line sources, especially where there exists a superficial masking effect caused by a highly resistive layer. In a survey carried out in the USSR, combined measurements were performed, both with line source and with surface point sources. The detected residual resistivity anomaly roughly delineates the contours of the known hydrocarbon deposit.  相似文献   

12.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.  相似文献   

13.
The principles of operation and force–displacement relationships of three novel spherical sliding isolation bearings are developed in this paper. These bearings are completely passive devices, yet exhibit adaptive stiffness and adaptive damping. That is, the stiffness and damping change to predictable values at calculable and controllable displacement amplitudes. The primary benefit of adaptive behavior is that a given isolation system can be separately optimized for multiple performance objectives and/or multiple levels of ground shaking. With the devices presented here, this is accomplished using technology that is inherently no more complex than what is currently used by the civil engineering profession. The internal construction consists of various concave surfaces and behavior is dictated by the different combinations of surfaces upon which sliding can occur over the course of motion. As the surfaces upon which sliding occurs change, the stiffness and effective friction change accordingly. A methodology is presented for determining which surfaces are active at any given time based on the effective radius of curvature, coefficient of friction and displacement capacity of each sliding surface. The force–displacement relationships and relevant parameters of interest are subsequently derived based on the first principles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Summary The finite element method, with triangular elements, is used to study the effect of a two-dimensional sloping contact on the surface electromagnetic fields. It is found in the case ofH-polarization and small slopes that the electric field and the apparent resistivity near the contact, on the conductive side, are higher than their asymptotic values. In the case ofE-polarization the apparent resistivity and phase values on the conductive side fall off less rapidly to their asymptotic values with decreasing slope resulting in higher apparent resistivity and phase values on the conductive side, than those expected for a vertical contact. The peak in the amplitude and phase of the normalized vertical magnetic field shifts from the resistive side for a vertical contact to the conductive side for a sloping contact. Far from the sloping contact, on the conductive side, higher values are observed for the normalized vertical magnetic field than in the case of a vertical contact.  相似文献   

15.
An important cause of seismic anisotropic attenuation is the interbedding of thin viscoelastic layers. However, much less attention has been devoted to layer‐induced anisotropic attenuation. Here, we derive a group of unified weighted average forms for effective attenuation from a binary isotropic, transversely isotropic‐ and orthorhombic‐layered medium in the zero‐frequency limit by using the Backus averaging/upscaling method and analyse the influence of interval parameters on effective attenuation. Besides the corresponding interval attenuation and the real part of stiffness, the contrast in the real part of the complex stiffness is also a key factor influencing effective attenuation. A simple linear approximation can be obtained to calculate effective attenuation if the contrast in the real part of stiffness is very small. In a viscoelastic medium, attenuation anisotropy and velocity anisotropy may have different orientations of symmetry planes, and the symmetry class of the former is not lower than that of the latter. We define a group of more general attenuation‐anisotropy parameters to characterize not only the anisotropic attenuation with different symmetry classes from the anisotropic velocity but also the elastic case. Numerical tests reveal the influence of interval attenuation anisotropy, interval velocity anisotropy and the contrast in the real part of stiffness on effective attenuation anisotropy. Types of effective attenuation anisotropy for interval orthorhombic attenuation and interval transversely isotropic attenuation with a vertical symmetry (vertical transversely isotropic attenuation) are controlled only by the interval attenuation anisotropy. A type of effective attenuation anisotropy for interval TI attenuation with a horizontal symmetry (horizontal transversely isotropic attenuation) is controlled by the interval attenuation anisotropy and the contrast in the real part of stiffness. The type of effective attenuation anisotropy for interval isotropic attenuation is controlled by all three factors. The magnitude of effective attenuation anisotropy is positively correlated with the contrast in the real part of the stiffness. Effective attenuation even in isotropic layers with identical isotropic attenuation is anisotropic if the contrast in the real part of stiffness is non‐zero. In addition, if the contrast in the real part of stiffness is very small, a simple linear approximation also can be performed to calculate effective attenuation‐anisotropy parameters for interval anisotropic attenuation.  相似文献   

16.
This research investigates the development of a semi‐active piezoelectric friction damper for controlling the seismic response of large‐scale structures. The proposed device is made of Duplex steel and leads to high friction capacity, which can be developed either in passive or semi‐active modes. For the later, piezoelectric actuators react against a stiff clamping system and apply a variable normal force on the multiple contact surfaces. To validate the design, a prototype, which contact surfaces were made of stainless steel and brake pad material, was built and tested in both friction modes. Moreover, an analytical model of the damper was developed to estimate the performance of the piezoelectric actuators within the clamping system. Experimental results showed that the proposed device achieves a force range factor of 1.9. These experimental results also compare well with those obtained from the analytical model of the damper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Under field conditions modern digital conductivity meters give standardized, rapid and reproducible measurements. Here we investigate the accuracy of their estimates of the composition of karst waters, as total hardness (TH, as mg/L CaCO3) for limestone and dolomite. These are the fundamental measures of process in carbonate karst geomorphology. PHREEQC theoretical curves for the dissolution of pure calcite/aragonite and dolomite in water at 25 °C are compared with water analyses from karst studies worldwide. Other principal ions encountered are sulphates, nitrates and chlorides (the ‘SNC’ group). From carbonate karsts, 2309 spring, well and stream samples were divided into uncontaminated (SNC < 10%), moderately contaminated (10 < SNC < 20%), and contaminated (SNC > 20%) classes. Where specific conductivity (SpC) is less than 600 µS/cm, a clear statistical distinction can be drawn between waters having little contamination and substantially contaminated waters with SNC > 20%. As sometimes claimed in manufacturers' literature, in ‘clean’ limestone waters TH is close to 1/2SpC, with a standard error of 2–3 mg/L. The slope of the best‐fit line for 1949 samples covering all SNC classes where SpC < 600 µS/cm is 1·86, very close to the 1·88 obtained for clean limestone waters; however, the value of the intercept is ten times higher. The regression line for clean limestone waters where SpC > 600 µS/cm helps to distinguish polluted waters from clean waters with possible endogenic sources of CO2. In the range 250 < SpC < 600 µS/cm, dolomite waters can be readily distinguished from limestone waters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A control strategy for semi-active friction devices leading to efficient hysteretic dissipaters is proposed. The control algorithm makes the contact force between the sliding surfaces of the damper proportional to the absolute value of the prior local peak of the damper deformation. This control logic leads to a non-linear force–deformation relation that satisfies homogeneity of degree one; this means that, like in a linear viscoelastic damping model, when the deformation is scaled by a constant, the force results are scaled by the same constant. The closed-loop system shows rectangular hysteresis loops which enclose an area proportional to the square of the deformation of the damper. Some characteristics of the dynamic response of structures incorporating this type of semi-active damper are investigated. It is demonstrated that in the case of single-degree-of-freedom models, the period of vibration and decay ratio are independent of the amplitude of vibration. In the case of multi-degree-of-freedom models with this type of nonlinearity, the free-vibration response can exhibit natural modes of vibration. A linearization method is proposed and modelling tools for the delay associated with actuator dynamics and for the flexibility of the brace connecting the damper to the structure are presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
储液池的抗震问题探讨   总被引:1,自引:0,他引:1  
应用流体固体动力耦合统一分析模型的有限元法,进行了储液池的抗震分析。分别探讨了储液池内液体的液面大幅波动、池壁刚度变化、池的深宽比等对地震响应的影响。研究结果表明:储液池壁刚度是比较敏感的物理量,弹性比刚性池壁与液体相互作用的非线性行为强,池壁所受流体的作用力大;液面波的影响也有同样规律,刚性池壁情况下考虑面波与否影响不太大,但弹性池壁却有较大影响;另外宽池比窄池的响应强。  相似文献   

20.
Snow interception in a coniferous stand leads to considerable short-range variability in snowcover depth, which in turn affects the water and heat regime of the soil. To study the coupling between snow accumulation, frost penetration, and hydrological response, plot-scale experiments were conducted in a subalpine spruce forest. The stony, sandy–loamy Spodosol was highly permeable and had an organic layer of 5–15 cm thickness. Within two plots, one underneath a tree crown and one in a canopy gap, we measured near-surface runoff, soil temperature, and liquid water content. Snow and frost depths varied more in space than between two winter periods at given locations. Frost penetration was greater near the trunk, where a higher portion of snowmelt water drained downslope close to the surface than in the gap due to frost-induced reduction of infiltration. In both years, the spring snowmelt occurred over two distinct periods. During the first snowmelt, the water percolated primarily through the frozen layer and part of it probably refroze within the frozen layer, thereby raising the total water and ice content. During the second event, near-surface runoff was more pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号