首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K d's) using simulated wastewater solutions prepared at pH 8.0±0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K d's ranged from 12±1 to 85±3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment. Received: 8 November 1996 · Accepted: 6 January 1997  相似文献   

2.
 The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine Kds, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The Kds for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium Kds of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium Kds were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and –0.6518, respectively. Sediment properties with the strongest correlations with strontium Kds were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and –0.6660, respectively. Effects of solution properties on strontium Kds were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium Kds were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0.8071 when all five properties were used and 0.8043 when three properties, equilibrium pH, MnO, and BET surface area, were used. Received: 30 November 1998 · Accepted: 16 February 1999  相似文献   

3.
The mobility of strontium in subsurface is largely influenced by sorption on to clay minerals. In the present study, kaolinite clay samples collected from the Kalpakkam nuclear plant site were employed to understand the sorption characteristics of strontium by batch method. The effect of several parameters such as time, strontium ion concentration, pH, temperature and ionic strength was investigated. The kinetic studies suggested pseudo-second-order mechanism. The experimental sorption data was fitted to Langmuir adsorption model for obtaining the sorption capacity of the sorbent. The maximum sorption capacity was 5.77 mg/g at 298 K and was found to increase with an increase in temperature. It was observed that the distribution coefficient (K d) of strontium on clay increased as the pH of the solution increased. The distribution coefficient was found to decrease with an increase in concentration of Na+ and Ca2+ ions. This variation of K d suggests that cation exchange is the predominant sorption process. It was also observed that sorption process is endothermic. The thermodynamic parameters such as ∆G 0, ∆H 0 and ∆S 0 were calculated. The negative values obtained for ∆G 0 indicated that the sorption of strontium on clay was spontaneous at all studied concentrations. ∆G 0 becomes more negative with an increase in temperature, suggests that the sorption process is more favorable at higher temperatures.  相似文献   

4.
Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ~201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.  相似文献   

5.
 The 11 lateral lakes of Coeur d'Alene River valley in northern Idaho have received heavy metal contamination from over a century of upstream mining. The lateral lakes lie within the flood plain of the Coeur d'Alene River, and in their bottom sediments is preserved a stratigraphic record of the upstream mining operations. To characterize the contaminated sediments in the lateral lakes, sampling techniques, including the Livingston piston corer and the Huttenen freeze box, have been developed by Quaternary geologists to preserve the vertical stratigraphy in the samples. From 26 cm to over 55 cm of undisturbed tailing sediments, commonly with “varve-like” features, have been found in each of the lateral lakes, with maximum concentrations by weight of lead at 3.8%, zinc at 3.4%, arsenic at 340 mg/kg, cadmium at 120 mg/kg and mercury at 7 mg/kg. The contamination in the lakes appears to be restricted to the shallow subsurface and heavy metal concentrations generally drop to background levels within a meter of depth. Received: 22 May 1998 · Accepted: 21 September 1998  相似文献   

6.
The 1000 km long Ok Tedi/Fly River system receives about 66 Mt/year of mining waste from the Ok Tedi copper-gold porphyry mine. Mine input has increased the suspended sediment load of the Middle Fly River about 5–10 times over the natural background. A significant yet unknown amount of copper-rich material deposits unevenly in the extensive tropical lowland floodplain. Recent alluvial sediments of the Fly River floodplain have copper contents of 620 mg/kg (±1σ: 430–900), whereas the regional background is 40 mg/kg (±σ: 25–60). This pattern is mirrored and enhanced by the gold dispersal pattern with a 7 ppb Au background versus a 140–275 ppb population in mine-derived material. Very high deposition rates (around 4 cm/y) of mine-derived sediment were determined in locations close to the creeks and channels which link the Fly River with the outer floodplain. A thin layer of 1–5 cm of copper-rich material (400–900 mg/kg Cu) was usually found on the bottom of drowned (tributary) valley lakes. Average dissolved copper content in waters of the inner floodplain is around 9 μg/l (±1σ: 5–14) as compared to unpolluted water from the outer floodplain with < 2 μg/l Cu. The present Fly River water, about 600 km downstream of the mine site, has concentrations of 17 ± 3 μg/l dissolved Cu. Received: 30 June 1996 / Accepted: 9 January 1997  相似文献   

7.
The epithermal Au-Ag Shkol'noe deposit is located in the Kandjol ore field, Kurama Mountains. This region is a part of the east-west trending Late Hercynian Bel'tau-Kurama volcanic belt, an Andean-style collisional margin. The deposit comprises a number of quartz-carbonate veins hosted by the syn-subductional Middle Carboniferous Karamazar granodiorites. The Au-Ag mineralization is considered to be the result of the earliest hydrothermal event in the region. The Rb-Sr isochron age 296.3 ± 1.3 Ma and an initial 87Sr/86Sr0=0.7071 ± 2 ratio were obtained for an adularia-sericite-quartz-calcite sample from Au-Ag mineralization. The 87Sr/86Sr ratio range from 0.70645 ± 10 to 0.70741 ± 10 was obtained for the calcites from the earlier and later mineral assemblages. The Rb-Sr age is interpreted as a real geological age of the Au-Ag mineralization. It corresponds to the initial stage of the Late Carboniferous – Early Permian collision following the main syn-subduction stage of Bel'tau-Kurama volcanic belt evolution. The comparison of the Rb-Sr age with previously obtained 40Ar-39Ar and K-Ar data for adularia from the Au-Ag mineralization implies that gangue minerals of the Shkol'noe deposit bears the fingerprint of at least three events in its history. They are (1) Au-Ag mineralization at 296.3 ± 1.3 Ma; and (2) two subsequent thermal pulses at 277 ± 4 and 263–267 ± 8 Ma. The minimum time scale for the hydrothermal activity within the Shkol'noe deposit is thus approximately 30 million years. A general uniformity of the strontium source during the hydrothermal processes within the Au-Ag Shkol'noe deposit (87Sr/86Sr0=0.70645 ± 10 to 0.70741 ± 10) is suggested as well as within the Bel'tau-Kurama belt (87Sr/86Sr0=0.7051–0.707). The slight shift into a higher strontium isotope composition of the hydrothermal minerals of the Shkol'noe deposit in comparison with other deposits and rocks of the Bel'tau-Kurama belt may be ascribed to the contribution of relatively radiogenic strontium from the Karamazar-type granitoids. The mobilization of low radiogenic strontium during propylitic alteration of diabase dikes emplaced after the Au-Ag mineralization could be responsible for comparatively low 87Sr/86Sr ratios in some of the latest post-dike carbonates. Received: 4 August 1998 / Accepted: 25 August 1998  相似文献   

8.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

9.
The partitioning of the rare earth elements between a peraluminous monzogranitic melt and a chloride-bearing, sulfur- and carbon dioxide-free, aqueous volatile phase was examined experimentally as a function of chloride and major element concentrations at 800 °C and 200 MPa. The light rare earth elements (e.g. La, Ce) partition into the aqueous volatile phase to a greater extent than the heavy rare earth elements (e.g. Yb, Lu). Distribution of the rare earth elements and the major elements H, Na, K, Ca, and Al between the melt phase (mp) and aqueous volatile phase (aq) is a function of the chlorine concentration in the system, and our data are consistent with the rare earth and major elements occurring as chloride complexes in the aqueous volatile phase. Apparent equilibrium constants for experiments at 800 °C and 200 MPa, K REE,Na aq/mp , expressed as the ratio of the concentration of a given rare earth element in the aqueous volatile phase to the concentration of the same element in the melt phase, divided by the cubed ratio of sodium in the aqueous volatile phase to the concentration of sodium in the melt phase, decrease systematically with increasing atomic number from K La,Na aq/mp = 0.41(±0.03) to K Lu,Na aq/mp =0.11(±0.01), except for Eu. These experimentally derived apparent equilibrium constants for the rare earth elements can be used in a numerical simulation of magmatic volatile exsolution. The simulation gave results consistent with the elemental distribution in the potassic alteration zone of a deep porphyry copper deposit, but higher concentrations of heavy rare earth elements are released into the magmatic aqueous solution than are captured in the secondary mineralization. Received: 1 November 1999 / Accepted: 7 June 2000  相似文献   

10.
 Experiments were performed in the three phase system high-silica rhyolite melt+low-salinity aqueous vapor+hydrosaline brine, to investigate the partitioning equilibria for copper in magmatic-hydrothermal systems at 800° C and 1 kbar, and 850° C and 0.5 kbar. Daqm/mlt Cu and apparent equilibrium constants, Kaqm/mlt Cu,Na, between the aqueous mixture (aqm=quenched vapor+brine) and the silicate melt (mlt) are calculated. Daqm/mlt Cu increases with increasing aqueous chloride concentration and is a function of pressure. Kaqm/mlt Cu,Na=215(±73) at 1 kbar and 800° C and Kaqm/mlt Cu,Na=11(±6) at 0.5 kbar and 850°C. Decreasing pressure from 1 to 0.5 kbar lowers Kaqm/mlt Cu,Na by a factor of approximately 20. Data revealed no difference in Kaqm/mlt Cu,Na or Daqm/mlt Cu as a function of the melt aluminium saturation index. Within the 2-phase field the Kaqm/mlt Cu,Na show no variation with total aqueous chloride, indicating that copper-sodium exchange between the vapor, brine and silicate melt is independent of the mass proportion of vapor and brine. Model copper-sodium apparent equilibrium constants for the hydrosaline brine and the silicate melt revealed a negative dependence on pressure. Model apparent equilibrium constants for copper-sodium exchange between the brine and vapor were close to unity at 1 kbar and 800° C. Received: 27 June 1994/Accepted: 30 March 1995  相似文献   

11.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   

12.
 Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38–40 m, 125–128 m, 131–137 m, 149–158 m, and 183–198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1–2 km of the eastern Snake River Plain. Received: 16 February 1996 · Accepted: 1 April 1996  相似文献   

13.
A hypothesis was tested to determine if a relationship exists between rates of submarine groundwater discharge and the distribution of seagrass beds in the coastal, nearshore northeastern Gulf of Mexico. As determined by nonparametric statistics, four of seven seagrass beds in the northeastern Gulf of Mexico had significantly greater submarine groundwater discharge compared with adjacent sandy areas, but the remainder exhibited the opposite relationship. We were thus unable to verify if a relationship exists between submarine groundwater discharge and the distribution of seagrass beds in the nearshore sites selected. A second objective of this study was to determine the amount of nitrogen and phosphorus delivered to nearshore areas by submarine groundwater discharge. We considered new nutrient inputs to be delivered to surface waters by the upward flux of fresh water. This upward flux of water encounters saline porewaters in the surficial sediments and these porewaters contain recycled nutrients; actual nutrient flux from the sediment to overlying waters includes both new and recycled nutrients. New inputs of nitrogen to overlying surface waters for one 10-km section of coastline, calculated by multiplying groundwater nutrient concentrations from freshwater wells by measured seepage rates, were on the order of 1,100±190 mol N d−1. New and recycled nitrogen fluxes, calculated by multiplying surficial porewater concentrations by measured seepage rates, yielded fluxes of 3,600 ±1,000 mol N d−1. Soluble reactive phosphate values were 150±40 mol P d−1 using freshwater well concentrations and 130±3.0 mol P d−1 using porewater concentrations. These values are comparable to the average nutrient delivery of a small, local river.  相似文献   

14.
The heat capacity of synthetic, stoichiometric wadeite-type K2Si4O9 has been measured by DSC in the 195≤T(K)≤598 range. Near the upper temperature limit of our data, the heat capacity observed by DSC agrees with that reported by Geisinger et al. (1987) based on a vibrational model of their infrared and Raman spectroscopic data. However, with decreasing temperature, the Cp observed by DSC is progressively higher than that predicted from the vibrational model, suggesting that the standard entropy of K2Si4O9 is likely to be larger than 198.9 ± 4.0 J/K · mol computed from the spectroscopic data. A fit to the DSC data gave: Cp(T) = 499.13 (±1.87) − 4.35014 · 103(±3.489 · 101) · T −0.5, with T in K and average absolute percent deviation of 0.37%. The room-temperature compressibilities of kalsilite and leucite, hitherto unknown, have been measured as well. The data, fitted to the Murnaghan equation of state, gave K o = 58.6 GPa, K o  = 0.1 for kalsilite and K o = 45 GPa, K o  = 5.7 for α-leucite. Apart from the above mentioned data on the properties of the individual phases, we have also obtained reaction-reversals on four equilibria in the system K2O-Al2O3-SiO2. The Bayesian method has been used simultaneously to process the properties of 13 phases and 15 reactions between them to derive an internally consistent thermodynamic dataset for the K2O-Al2O3-SiO2 ternary. The enthalpy of formation of K2Si4O9 wadeite is in perfect agreement with its revised calorimetric value, the standard entropy is 232.1 ± 10.4 J/K · mol, ∼15% higher than that implied by vibrational modeling. The phase diagram, generated from our internally consistent thermodynamic dataset, shows that for all probable P-T trajectories in the subduction regime, the stable pressure-induced decomposition of K-feldspar will produce coesite + kalsilite rather than coesite + kyanite + K2Si4O9 (cf. Urakawa et al. 1994). Received: 11 June 1997 / Accepted: 2 December 1997  相似文献   

15.
Strontium sorption to amorphous silica and goethite was measured as a function of pH and dissolved strontium and carbonate concentrations at 25°C. Strontium sorption gradually increases from 0 to 100% from pH 6 to 10 for both phases and requires multiple outer-sphere surface complexes to fit the data. All data are modeled using the triple layer model and the site-occupancy standard state; unless stated otherwise all strontium complexes are mononuclear. Strontium sorption to amorphous silica in the presence and absence of dissolved carbonate can be fit with tetradentate Sr2+ and SrOH+ complexes on the β-plane and a monodentate Sr2+complex on the diffuse plane to account for strontium sorption at low ionic strength. Strontium sorption to goethite in the absence of dissolved carbonate can be fit with monodentate and tetradentate SrOH+ complexes and a tetradentate binuclear Sr2+ species on the β-plane. The binuclear complex is needed to account for enhanced sorption at hgh strontium surface loadings. In the presence of dissolved carbonate additional monodentate Sr2+ and SrOH+ carbonate surface complexes on the β-plane are needed to fit strontium sorption to goethite. Modeling strontium sorption as outer-sphere complexes is consistent with quantitative analysis of extended X-ray absorption fine structure (EXAFS) on selected sorption samples that show a single first shell of oxygen atoms around strontium indicating hydrated surface complexes at the amorphous silica and goethite surfaces.  相似文献   

16.
Mo-Bi mineralization occurs in subvertical and subhorizontal quartz-muscovite-± K-feldspar veins surrounded by early albitic and later K-feldspathic alteration halos in monzogranite of the Archean Preissac pluton, Abitibi region, Québec, Canada. Molybdenite is intergrown with muscovite in the veins or associated with K-feldspar in the alteration halos. Mineralized veins contain five main types of fluid inclusions: aqueous liquid and liquid-vapor inclusions, aqueous carbonic liquid-liquid-vapor inclusions, carbonic liquid and vapor inclusions, halite-bearing aqueous liquid and liquid-vapor inclusions, trapped mineral-bearing aqueous liquid and liquid-vapor inclusions. The carbonic solid in frozen carbonic and aqueous-carbonic inclusions melts in most cases at −56.7 ± 0.1 °C indicating that the carbonic fluid consists largely of CO2. All aqueous inclusion types and the aqueous phase in carbonic inclusions have low initial melting temperatures (≥70 °C), requiring the presence of salts other than NaCl. Leachate analyses show that the bulk fluid contains variable proportions of Na, K, Ca, Cl, and traces of Mg and Li. The following solids were identified in the fluid inclusions by SEM-EDS analysis: halite, calcite, muscovite, millerite (NiS), barite and antarcticite (CaCl2 · 6H2O). All are interpreted to be trapped phases except halite which is a daughter mineral, and antarcticite which formed during sample preparation (freezing). Aqueous inclusions homogenize to liquid at temperatures between 75 °C and 400 °C; the mode is 375 °C. Aqueous-carbonic inclusions homogenize to liquid or vapor between 210 °C and 400 °C. Halite-bearing aqueous inclusions homogenize by halite dissolution at approximately 170 °C. Aqueous inclusions containing trapped solids exhibit liquid-vapor homogenization at temperatures similar to those of halite-bearing aqueous inclusions. Temperatures of vein formation, based on oxygen isotopic fractionation between quartz and muscovite, range from 342 °C to 584 °C. The corresponding oxygen isotope composition of the aqueous fluid in equilibrium with these minerals ranges from 1.2 to 5.5 per mil with a mean of 3.9 per mil, suggesting that the liquid had a significant meteoric component. Isochores for aqueous fluid inclusions intersect the modal isotopic isotherm of 425 °C at pressures between 590 and 1900 bar. A model is proposed in which molybdenite was deposited owing to decreasing temperature and/or pressure from CO2-bearing, moderate to high salinity fluids of mixed magmatic-meteoric origin that were in equilibrium with K-feldspar and muscovite. These fluids resulted from the degassing of a monzogranitic magma and evolved through interaction with volcanic (komatiitic) and sedimentary country rocks. Received: 6 February 1997 / Accepted: 28 January 1998  相似文献   

17.
 A surficial clay aquitard extends through the urban area where Mexico City is located. It has been assumed to function as a protective layer to the underlying aquifer that provides 42 m3/s out of 63 m3/s of water used by 18 million inhabitants. To provide such protection, the aquitard must be impermeable to water flow and, ideally, have a significant capacity to sorb contaminants. The latter aspect was addressed, studying the vertical variability of sorption of perchloroethylene (PCE), a widely used organic compound considered to pose health risks in groundwater. Batch sorption tests were used and the clay-rich strata in the depth interval from 8 to 75 m were studied. The results suggest that sorption depends mainly on the fraction of organic carbon (foc) present in the clayey materials. The sorption data were fit to the linear and Freundlich models; many strata could be fit well by either model, while some strata were distinctly non-linear. The linear isotherms showed a mean value of 32.8 ml/g, and the Freundlich isotherm 96.6 ml/g, confirming that the clay-rich media have significant sorption capacity for PCE. From the environmental perspective the clay-rich materials are serving as protection to the groundwater system. Received: 2 November 1998 · Accepted: 15 February 1999  相似文献   

18.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

19.
Regional variations in initial 87Sr/86Sr ratios (r i) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The r i values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with r i of 0.7035. Rb/Sr varies linearly with r i, producing “pseudoisochrons” with apparent “ages” close to the age of the wall rocks. Measured δ 18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock δ 18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (r i>0.708) rather than mantle. “Pseudoisochrons” resulting from these data are actually mixing lines that yield apparent “ages” less than the true age of the wall rocks and meaningless “ri”. Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region.  相似文献   

20.
Isotopes of plutonium (Pu), cesium (Cs), and cobalt (Co) introduced into the Hudson River Estuary from fallout deposition, the erosion of fallout-contaminated surface soils, and nuclear reactor effluent (isotopes of Cs and Co only) have been measured in water column samples collected from 1975 to 1980 Isotopic measurements conducted independently by two research groups utilizing different sampling and analytical techniques have been summarized. The major conclusions drawn from the work are that for water samples collected by the two laboratories over similar time periods, the mean concentrations of nonfilterable239,240Pu (<0.45 μm) were identical at 0.13 fCi/l, mean concentrations of both137Cs and239,240Pu in suspended particulates were more divergent at 2,270±920 pCi/kg (±1 SD) and 1,430±430 pCi/kg for137Cs, and 19±8 pCi/kg and 12±4 pCi/kg for239,240Pu The behavior of239,240Pu and137Cs within the water column is shown to diverge within brackish waters Specifically, the magnitude of the137Cs distribution coefficient (K d ) can be expressed as an inverse power function of the chloride ion concentrations for chlorinities between 0.1 and 4 g Cl/l No difference in the239,240PuK d has been observed between fresh and brackish waters Based on the expected inventories of239,240Pu and137Cs within watershed soils, the current downstream transport of these radionuclides represents fractional mobilization rates on the order of 1–4 (×10−4) per year  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号