首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a subsurface and topside ionosphere radar sounder aboard the European Space Agency spacecraft Mars Express, in orbit at Mars since 25 December 2003, and in operation since 17 June 2005. The ionospheric sounding mode of MARSIS is capable of detecting the reflection of the sounding wave from the martian surface. This ability has been used in previous work to show that the surface reflection is absorbed and disappears during periods when high fluxes of energetic particles are incident on the ionosphere of Mars. These absorption events are believed to be the result of increased collisional damping of the sounding wave, caused by increased electron density below the spacecraft, in turn caused by impact ionization from the impinging particles. In this work we identify two absorption events that were isolated during periods when the surface reflection is consistently visible and when Mars is nearly at opposition. The visibility of the surface reflection is viewed in conjunction with particle and photon measurements taken at both Mars and Earth. Both absorption events are found to coincide with Earth passing through solar wind speed and ion flux signatures indicative of a corotating interaction region (CIR). The two events are separated by an interval of approximately 27 days, corresponding to one solar rotation. The first of the two events coincides with abruptly enhanced particle fluxes seen in situ at Mars. Simultaneous with the particle enhancement there are an abrupt decrease in the intensity of electron oscillations, typically seen by the Mars Express particle instrument ASPERA-3 between the magnetic pileup boundary and the martian bow shock, and a sharp drop in the solar wind pressure, seen in the proxy quantity based on MGS magnetometer observations. The decrease in oscillation intensity is therefore the probable effect of a relaxation of the martian bow shock. The second absorption event does not show a particle enhancement and complete ASPERA-3 data during that time are unavailable. Other absorption events are the apparent result of solar X-ray and XUV enhancements. We conclude that surface reflection absorption events are sometimes caused by enhanced ionospheric ionization from high energy particles accelerated by the shocks associated with a CIR. A full statistical analysis of CIRs in relation to observed absorption events in conjunction with a quantitative analysis of the deposition of ionization during space weather events is needed for a complete understanding of this phenomenon. If such analyses can be carried out, radar sensing of the martian ionosphere might be useful as a space weather probe.  相似文献   

2.
Mars Express (MEX) does not carry its own magnetometer which complicates interpretation of ASPERA-3/MEX ion measurements. The direction of the interplanetary magnetic field (IMF) is especially important because it, among other things, determines the direction of the convective electric field and orientation of the cross tail current sheet and tail lobes. In this paper we present a case study to show the properties of the magnetic field near Mars in a quasi-neutral hybrid (QNH) model at the orbits where the Mars Global Surveyor (MGS) has made measurements, present a method to derive the IMF clock angle by comparing fields in a hybrid model and the direction of the magnetic field measured by MGS by deriving the IMF clock angle. We also use H+ ring velocity distribution observations upstream of the bow shock measured by the IMA/ASPERA-3 instrument on board MEX spacecraft. These observations are used to indirectly provide the orientation of the IMF. We use a QNH model (HYB-Mars) where ions are modeled as particles while electrons form a mass-less charge neutralizing fluid. We found that the direct MGS and non-direct IMA observations of the orientation magnetic field vectors in non-crustal magnetic field regions are consistent with the global magnetic field draping pattern predicted by the global model.  相似文献   

3.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

4.
We have analysed ion escape at Mars by comparing ASPERA-3/Mars Express ion measurements and a 3-D quasi-neutral hybrid model. As Mars Express does not have a magnetometer onboard, the analysed IMA data are from an orbit when the IMF clock angle was possible to determine from the magnetic field measurements of Mars Global Surveyor. We found that fast escaping planetary ions were observed at the place which, according to the 3-D model, is anticipated to contain accelerated heavy ions originating from the martian ionosphere. The direction of the interplanetary magnetic field was found to affect noticeably which regions can be magnetically connected to Mars Express and to the overall 3-D Mars-solar wind interaction.  相似文献   

5.
The ‘Mars Energetic Radiation Environment Models’ (dMEREM and eMEREM) recently developed for the European Space Agency are herein used to estimate, for the first time, background Galactic Cosmic Ray (GCR) radiation and flare related solar energetic particle (SEP) events at three candidate martian landing sites under conditions where particle arrival occurred at solar minimum (December, 2006) and solar maximum (April, 2002) during Solar Cycle 23. The three landing sites were selected on the basis that they are characterized by significantly different hydrological conditions and soil compositions. Energetic particle data sets recorded on orbit at Mars at the relevant times were incomplete because of gaps in the measurements due to operational constraints. Thus, in the present study, comprehensive near-Earth particle measurements made aboard the GOES spacecraft were used as proxies to estimate the overall particle doses at each perspective landing site, assuming in each case that the fluxes fell off as 1/r2 (where r is the helio-radial distance) and that good magnetic connectivity always prevailed. The results indicate that the particle radiation environment on Mars can vary according to the epoch concerned and the landing site selected. Particle estimations obtained using MEREM are in reasonable agreement, given the inherent differences between the models, with the related NASA Heavy Ion–Nucleon Transport Code for Space Radiation/HZETRN. Both sets of results indicated that, for short (30 days) stays, the atmosphere of Mars, in the cases of the SEPs studied and the then prevailing background galactic cosmic radiation, provided sufficient shielding at the planetary surface to maintain annual skin and blood forming organ/BFO dose levels below currently accepted ionizing radiation exposure limits. The threat of occurrence of a hard spectrum SEP during Cruise-Phase transfers to/from Mars over 400 days, combined with the associated cumulative effect of prolonged GCR exposure, poses an as yet unsolved hazard to prospective onboard personnel.  相似文献   

6.
In December 2006, a single active region produced a series of proton solar flares, with X-ray class up to the X9.0 level, starting on 5 December 2006 at 10:35 UT. A feature of this X9.0 flare is that associated MeV particles were observed at Venus and Mars by Venus Express (VEX) and Mars Express (MEX), which were ∼80° and ∼125° east of the flare site, respectively, in addition to the Earth, which was ∼79° west of the flare site. On December 5, 2006, the plasma instruments ASPERA-3 and ASPERA-4 on board MEX and VEX detected a large enhancement in their respective background count levels. This is a typical signature of solar energetic particle (SEP) events, i.e., intensive MeV particle fluxes. The timings of these enhancements were consistent with the estimated field-aligned travel time of particles associated with the X9.0 flare that followed the Parker spiral to reach Venus and Mars. Coronal mass ejection (CME) signatures that might be related to the proton flare were twice identified at Venus within <43 and <67 h after the flare. Although these CMEs did not necessarily originate from the X9.0 flare on December 5, 2006, they most likely originated from the same active region because these characteristics are very similar to flare-associated CMEs observed on the Earth. These observations indicate that CME and flare activities on the invisible side of the Sun may affect terrestrial space weather as a result of traveling more than 90° in both azimuthal directions in the heliosphere. We would also like to emphasize that during the SEP activity, MEX data indicate an approximately one-order of magnitude enhancement in the heavy ion outflow flux from the Martian atmosphere. This is the first observation of the increase of escaping ion flux from Martian atmosphere during an intensive SEP event. This suggests that the solar EUV flux levels significantly affect the atmospheric loss from unmagnetized planets.  相似文献   

7.
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite onboard Mars Express and data from the Magnetometer/Electron Reflectometer (MAG/ER) on Mars Global Surveyor have been analyzed to determine whether ion beam events (IBEs) are correlated with the direction of the draped interplanetary magnetic field (IMF) or the proximity of strong crustal magnetic fields to the subsolar point. We examined 150 IBEs and found that they are organized by IMF draping direction. However, no clear dependence on the subsolar longitude of the strongest magnetic anomaly is evident, making it uncertain whether crustal magnetic fields have an effect on the formation of the beams. We also examined data from the IMA sensor of the ASPERA-4 instrument suite on Venus Express and found that IBEs are observed at Venus as well, which indicates the morphology of the Martian and Venusian magnetotails are similar.  相似文献   

8.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   

9.
F. Duru  D.A. Gurnett  R. Frahm 《Icarus》2010,206(1):74-82
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft is capable of measuring ionospheric electron density by the use of two main methods: remote radar sounding and from the excitation of local plasma oscillations. The frequency of the locally excited electron plasma oscillations is used to measure the local electron density. However, plasma oscillations are not observed when the plasma flow velocity is higher than about 160 km/s, which occurs mainly in the solar wind and magnetosheath. As a consequence, in many passes, there is a sudden disappearance of the plasma oscillations as the spacecraft enters into the magnetosheath. This fact allows us to identify a flow velocity boundary on the dayside, between the ionosphere of Mars and the shocked solar wind. This paper summarizes the results of the measurement of 552 orbits mostly over a period from August 4, 2005 to August 17, 2007. The boundary points found using MARSIS have been verified by measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) instrument on Mars Express. The average position of the flow velocity boundary is compared to flow velocity simulations computed using hybrid model and other boundaries. The boundary altitude is slightly lower than the magnetic pile-up boundary determined using Phobos 2 and Mars Global Surveyor (MGS) crossings, but it is in good agreement with the induced magnetospheric boundary determined by ASPERA-3. Investigation of the effect of the crustal magnetic field revealed that the flow velocity boundary is raised at the locations with strong crustal magnetic fields.  相似文献   

10.
We present measurements with an Energetic Neutral Atom (ENA) imager on board Mars Express when the spacecraft moves into Mars eclipse. Solar wind ions charge exchange with the extended Mars exosphere to produce ENAs that can spread into the eclipse of Mars due to the ions' thermal spread. Our measurements show a lingering signal from the Sun direction for several minutes as the spacecraft moves into the eclipse. However, our ENA imager is also sensitive to UV photons and we compare the measurements to ENA simulations and a simplified model of UV scattering in the exosphere. Simulations and further comparisons with an electron spectrometer sensitive to photoelectrons generated when UV photons interact with the spacecraft suggest that what we are seeing in Mars' eclipse are ENAs from upstream of the bow shock produced in charge exchange with solar wind ions with a non-zero temperature. The measurements are a precursor to a new technique called ENA sounding to measure solar wind and planetary exosphere properties in the future.  相似文献   

11.
The ASPERA-3 experiment onboard the Mars Express spacecraft revealed, near the wake boundary of Mars, a spatially narrow, strip-like plasma structure composed of magnetosheath-like electrons and planetary ions. The peak electron energy often exceeds the peak energy at the bow shock that indicates a significant heating (acceleration) during the structure formation. It is shown that this structure is formed during efficient plasma penetration into the martian magnetosphere in the region near the terminator. The penetration of sheath electrons and their gradual heating (acceleration) is accompanied by a change of the ion composition from a solar wind plasma to a planetary plasma dominated by oxygen ions. A possible mechanism of plasma inflow to the magnetosphere is discussed.  相似文献   

12.
We have performed a numerical simulation to analyze the energy spectra of escaping planetary O+ and O2+ ions at Mars. The simulated time-energy spectrograms were generated along orbit no. 555 (June 27, 2004) of Mars Express when its Ion Mass Analyzer (IMA)/ASPERA-3 ion instrument detected escaping planetary ions. The simulated time-energy spectrograms are in general agreement with the hypothesis that planetary O+ and O2+ ions far from Mars are accelerated by the convective electric field. The HYB-Mars hybrid model simulation also shows that O+ ions originating from the ionized hot oxygen corona result in a high-energy (E>1 keV) O+ ion population that exists very close to Mars. In addition, the simulation also results in a low-energy (E<0.1 keV) planetary ion population near the pericenter. In the analyzed orbit, IMA did not observe a clear high-energy planetary ion or a clear low-energy planetary ion population near Mars. One possible source for this discrepancy may be the Martian magnetic crustal anomalies because MEX passed over a strong crustal field region near the pericenter, but the hybrid model does not include the magnetic crustal anomalies.  相似文献   

13.
The asymmetry of fluxes of solar wind and planetary ions is studied by using the ASPERA-3 observations onboard the Mars Express spacecraft in February 2004 to March 2006. Due to the small scale of the Martian magnetosphere and its induced origin, the flow pattern near Mars is sensitive to the directions of the interplanetary magnetic and electric (-V×B) fields. Asymmetry of the magnetic field draping produces an asymmetry in plasma flows in the plane containing the IMF. The crustal magnetic fields on Mars also influence the flow pattern. Scavenging of planetary ions is less efficient in the regions of strong crustal magnetization and therefore the escape fluxes of planetary ions in the southern hemisphere are smaller. The results of the observations are compared to simulations based on a 3D hybrid model with several ion species.  相似文献   

14.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

15.
The sunlit portion of planetary ionospheres is sustained by photoionization. This was first confirmed using measurements and modelling at Earth, but recently the Mars Express, Venus Express and Cassini-Huygens missions have revealed the importance of this process at Mars, Venus and Titan, respectively. The primary neutral atmospheric constituents involved (O and CO2 in the case of Venus and Mars, O and N2 in the case of Earth and N2 in the case of Titan) are ionized at each object by EUV solar photons. This process produces photoelectrons with particular spectral characteristics. The electron spectrometers on Venus Express and Mars Express (part of ASPERA-3 and 4, respectively) were designed with excellent energy resolution (ΔE/E=8%) specifically in order to examine the photoelectron spectrum. In addition, the Cassini CAPS electron spectrometer at Saturn also has adequate resolution (ΔE/E=16.7%) to study this population at Titan. At Earth, photoelectrons are well established by in situ measurements, and are even seen in the magnetosphere at up to 7RE. At Mars, photoelectrons are seen in situ in the ionosphere, but also in the tail at distances out to the Mars Express apoapsis (∼3RM). At both Venus and Titan, photoelectrons are seen in situ in the ionosphere and in the tail (at up to 1.45RV and 6.8RT, respectively). Here, we compare photoelectron measurements at Earth, Venus, Mars and Titan, and in particular show examples of their observation at remote locations from their production point in the dayside ionosphere. This process is found to be common between magnetized and unmagnetized objects. We discuss the role of photoelectrons as tracers of the magnetic connection to the dayside ionosphere, and their possible role in enhancing ion escape.  相似文献   

16.
Kocharov  Leon  Torsti  Jarmo  Laitinen  Timo  Teittinen  Matti 《Solar physics》1999,190(1-2):295-307
We have analyzed five solar energetic particle (SEP) events observed aboard the SOHO spacecraft during 1996–1997. All events were associated with impulsive soft X-ray flares, Type II radio bursts and coronal mass ejections (CMEs). Most attention is concentrated on the SEP acceleration during the first 100 minutes after the flare impulsive phase, post-impulsive-phase acceleration, being observed in eruptions centered at different solar longitudes. As a representative pattern of a (nearly) well-connected event, we consider the west flare and CME of 9 July 1996 (S10 W30). Similarities and dissimilarities of the post-impulsive-phase acceleration at large heliocentric-angle distance from the eruption center are illustrated with the 24 September 1997 event (S31 E19). We conclude that the proton acceleration at intermediate scales, between flare acceleration and interplanetary CME-driven shock acceleration, significantly contributes to the production of ≳10 MeV protons. This post-impulsive-phase acceleration seems to be caused by the CME lift-off.  相似文献   

17.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

18.
Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center’s Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 μm-atm), as were measurements made close in time (ranging from <1 to >8 μm-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA/GSFC’s Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.  相似文献   

19.
The experiment with 10K-80 aboard the INTER-BALL-2 (which detects protons with energies &amp;gt; 7, 27&amp;#x2013;41, 41&amp;#x2013;58, 58&amp;#x2013;88, 88&amp;#x2013;180 and 180&amp;#x2013;300 MeV) registered six events of the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP increase.  相似文献   

20.
The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment flown on the Mars Express (MEX) spacecraft includes the Electron Spectrometer (ELS) as part of its complement. The ELS instrument measures the differential electron flux spectrum in a 128-level logarithmic energy sweep within a time period of 4 s. The orbital path of MEX traverses the martian sheath, cusps, and tail where ELS recorded periodic electron intensity oscillations. These oscillations comprised periodic variations of up to an order of magnitude (peak to valley) in energy flux, with the largest amplitudes in the tens to hundreds of eV range. The observed oscillations displayed periods ranging from minutes down to the instrument sweep resolution of 4 s. In the cases analyzed here, the frequency of the integrated electron energy flux typically peaked between 0.01 and 0.02 Hz. This frequency range is nearly the same as the typical O+ gyrofrequency in the magnetosheath, calculated using magnetometer data from Mars Global Surveyor. Due to the motion of the spacecraft, it is unclear if the wave structures observed were permanent standing waves or rather constituted waves propagating past the spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号