首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magnitude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the eddy viscosity near the bottom than the structure in the upper water layer.  相似文献   

2.
The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied.  相似文献   

3.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

4.
A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.  相似文献   

5.
Forestry has played an important role in hazard mitigation associated with debris flows. Most forest mitigation measures refer to the experience of soil and water conservation, which disregard the destructive effect of debris flows, causing potentially serious consequences. Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force. In this paper, we summarized two impact failure models of a single tree: stem breakage and overturning. The influences of different tree sizes characteristics(stem base diameter, tree weight, and root failure radius) and debris-flow characteristics(density, velocity, flow depth, and boulder diameter) on tree failure were analyzed. The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning. With an increase in tree size, the ability to resist stem breakage and overturning increases. Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity, depth, and boulder diameter. The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results. The proposed models were applied in the Xiajijiehaizi Gully as a case study, and the results explain the destruction of trees in the forest dispersing zone. This work provides references for implementing forest measures for debris-flow hazard mitigation.  相似文献   

6.
According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types: high-viscous, viscous, and sub-viscous debris flows. Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio. This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied. The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows.  相似文献   

7.
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.  相似文献   

8.
On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide deposits retained in the ravine during the 2008 Wenchuan earthquake. This paper describes a two-dimensional hybrid numerical method that simulates the entire process of the debris flow from initiation to transportation and finally to deposition. The study area is discretized into a grid of square zones. A two dimensional finite difference method is then applied to simulate the rainfall-runoff and debris flow runout processes. The analysis is divided into three steps; namely, rainfall-runoff simulation, mixing water and solid materials, and debris flow runout simulation. The rainfall-runoff simulation is firstly conducted to obtain the cumulative runoff near the location of main source material and at the outlet of the first branch. The water and solid materials are then mixed to create an inflow hydrograph for the debris flow runout simulation. The occurrence time and volume of the debris flow can be estimated in this step. Finally the runout process of the debris flow is simulated. When the yield stress is high, it controls the deposition zone. When the yield stress is medium or low, both yield stress and viscosity influence the deposition zone. The flow velocity is largely influenced by the viscosity. The estimated yield stress by the equation, τ y = ρghsin θ, and the estimated viscosity by the equation established by Bisantino et al. (2010) provide good estimates of the area of the debris flow fan and the distribution of deposition depth.  相似文献   

9.
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.  相似文献   

10.
Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.  相似文献   

11.
Experimental study on the viscoelastic behaviors of debris flow slurry   总被引:1,自引:0,他引:1  
The rheological properties of most liquid in nature are between liquids and solids,including both elastic changes and viscosity changes,that is socalled "viscoelastic".Dynamic oscillatory test was used to quantitatively study the distinct viscoelastic behaviors of debris flow slurry in the shear stress conditions for the first time in this study.The debris flow slurry samples were from Jiangjiagou Ravine,Yunnan Province,China.The experimental results were found that at the low and middle stages of shearing,when the angular velocity ω<72.46 s-1,the loss modulus(G") was greater than the storage modulus(G’),i.e.G">G’.At the late stage of shearing,when the angular velocity ω≧72.46 s-1,the storage modulus was greater than or equal to the loss modulus,i.e.G’≧G",tanδ≦1(where phase-shift angleδ=G"/G’),and the debris flow slurry was in a gel state.Therefore,the progress of this experimental study further reveals the mechanism of hyperconcentrated debris flows with a high velocity on low-gradient ravines.  相似文献   

12.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

13.
There are two different modeling approaches which have been proposed and utilized to derive residual currents: the first approach is equivalent to deducing residual currents from current-meter records using filtering techniques or time averages of time-series records to remove tidal variations; in the second approach, filters or time averages over several tidal cycles are applied to the hydrodynamic equations to generate the governing equations for residual circulation. Based on the latter, both the baroclinic dynamic models of residual circulation are proposed, of which one is a two-dimensional transport model and the other is a three-dimensional model with variable eddy viscosity. The two-dimensional transport model is a direct generalization from the barotropic model of residual circulation presented by Nihoul and Randy (1975) and Heaps (1978) to the baroclinic model. In the three-dimensional model with variable eddy viscosity, using a Sturm-Liouville system adopted in the reference [5], the nondimensional problem for residual circulation reduces to the nondimensional problem of the elevation and the expression of residual currents. It should be pointed out that both the baroclinic models developed in the present paper are confined to describe the Eulerian residual circulation only.  相似文献   

14.
Debris flow fan affects the river profile and landscape evolution.The propagation of multiple debris flows along a river can cause inundation and breaching risk,which can be exemplified by the Min River after the Wenchuan earthquake,Sichuan province,China.In this work,large flume tests were conducted to examine the interactions between debris flows and water current with the fan geometry,momentum,runout distance,deposited width,the relative water level upstream and dominated stress.The results reveal that stony flow commonly travels at a high speed and forms a long rectangle shape fan,while the muddy flow generally travels at a low speed and forms a fan-shaped depositional area.The stony flow can block a river even when the momentum is close to the water current;the muddy flow can block a river when the momentum is lower than that of water current.In case of complete river damming,the relative water level upstream indicates that the inundation risk from the muddy flow damming river would be higher than the inundation risk of stony flow.The diversion ratio of muddy flow decreases as damming ratio.Comparison of dimensionless numbers reveals that stony flow is dominated by grain collision stress combined with turbulent mixing stress,while the muddy flow is dominated by viscous shear stress over friction stress.The fan geometry,damming ratio,diversion ratio,and the dominated stress all together indicate that stony flow strongly interacts with water current while the muddy flow does not.The results can be helpful for understanding the physical interactions between water current and various debris flows,and debris flow dynamics at the channel confluence area.  相似文献   

15.
针对似大地水准面在精化过程中不同移去-恢复高程转换模型的适用性和选取问题,基于二次曲面和EGM2008重力场模型,分别构建了RBF神经网络、多面函数和Shepard等3种类型的移去-恢复模型,结合平原和高原山区两个工程实例,通过调整高程拟合点数目进行似大地水准面拟合与精度对比。结果表明,在平原地区,EGM2008-多面函数高程模型精度略优于其他模型;在高原山区,当拟合点数较少时,基于EGM2008的移去-恢复模型精度高于基于二次曲面的移去-恢复模型,其中,EGM2008-多面函数和EGM2008-Shepard较优,而随着拟合点数目的增加,二次曲面-Shepard高程转换模型的精度优于其他模型。  相似文献   

16.
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas. Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%. The velocity and depth of the viscous debris flow were measured, processed, and subsequently used to characterize the viscous debris flow in the drainage channel. Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here. However, the flow patterns in the two types of channels were similar at other points. These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure. In addition, in the smooth channel, the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure. Furthermore, the viscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%. Finally, the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased; the maximum energy dissipation ratio observed was 62.9% (where B = 0.6 m and L/w = 6.0).  相似文献   

17.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

18.
Nonlinear numerical models of continuously stratified seas are developed for vertical sections to study the mechanism of coastal upwelling and coastal jets in two kinds of seas: the so-called finite or closed sea bounded by two vertical coastal coasts, without elevation of sea surface, but with a flat bottom; and the semi-infinite sea bounded by only one vertical coast, with both an elevation of sea surface and a flat or inclined bottom. Constant wind stress in the first case, and constant wind stress or negative wind stress curl in the second case, are abruptly imposed. The key procedure for the mathematical analysis is to calculate the horizontal pressure gradient first by a special treatment. In the first case, the variation of horizontal components of velocity is changed with time to show three successive time intervals. The results show that the width of baroclinic jets depends upon (σS)1/2, and that distribution of isopycnic lines delineates the warm and cold regions. The relative importance of each term in the equilibrium among forces is thus determined. Distribution of stream function in vertical section reveals the upper and bottom Ekman layers. Two coastal jets are found with different alongshore velocities. The distribution of density anomalies displays the horizontal diffusion adjustment. An unstable case appears at different surface boundary conditions. In the second case, the vertical velocity will be stronger in the sea with less stratification, with an inclined bottom, and with a negative wind stress curl. The horizonatal offshore velocity increases in strength in a sea with inclined bottom and with negative wind stress curl. The vertical circulation pattern reveals the upwelling only. The distribution of density shows the isopycnic lines lifted upward near the shores. Obviously, the range of elevation of sea surface near the shore is larger than that far offshore. The jet width is less than the Rossby radius of deformation. A stronger jet will occur in more shallow water with negative wind stress curl. The coastal jet does not develop when the coefficient of horizontal turbulence increases to a certain limiting value.  相似文献   

19.
A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably.  相似文献   

20.
To mitigate the damage caused by debris flows resulting from heavy precipitation and to aid in evacuation plan preparation, areas at risk should be mapped on a scale appropriate for affected individuals and communities. We tested the effectiveness of simply identifying debris-flow hazards through automated derivation of surface curvatures using LiDAR digital elevation models. We achieved useful correspondence between plan curvatures and areas of existing debris-flow damage in two localities in Japan using the analysis of digital elevation models(DEMs). We found that plan curvatures derived from 10 m DEMs may be useful to indicate areas that are susceptible to debris flow in mountainous areas. In residential areas located on gentle sloping debris flow fans, the greatest damage to houses was found to be located in the elongated depressions that are connected to mountain stream valleys. Plan curvaturederived from 5 m DEM was the most sensitive indicators for susceptibility to debris flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号