首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Topographically trapped (subinertia) waves that propagate along a coast lying in an arbitrary direction on aβ-plane are studied. It is found that the waves also propagate in the direction normal to the coast within an envelope due to theβ-effect. The dispersion relation is hardly affected by theβ-effect except in a long wavelength or long period range in which generalized Haurwitz waves (Takeda, 1984b) exist. In the long wavelength or long period range, two types of waves exist: topographically trapped type waves and generalized Haurwitz type waves.  相似文献   

2.
Simulations of Rossby–Haurwitz waves have been carried out using four different high‐resolution numerical shallow water models: a spectral model, two semi‐Langrangian models predicting wind components and potential vorticity respectively, and a finite‐volume model on a hexagonal–icosahedral grid. The simulations show that (i) unlike the nondivergent case, the shallow water Rossby–Haurwitz wave locally generates small‐scale features and so has a potential enstrophy cascade, and (ii) contrary to common belief, the zonal wavenumber 4 Rossby–Haurwitz wave is dynamically unstable and will eventually break down if initially perturbed. Implications of these results for the use of the Rossby–Haurwitz wave as a numerical model test case are discussed. The four models tested give very similar results, giving confidence in the accuracy and robustness of the results. The most noticeable difference between the models is that truncation errors in the hexagonal–icosahedral grid model excite the Rossby–Haurwitz wave instability, causing the wave to break down quickly, whereas for the other models in the configurations tested the instability is excited only by roundoff error at worst, and the Rossby–Haurwitz wave breaks down much more slowly or not at all.  相似文献   

3.
A banner bank off the north coast of the Chengshan Headland,Shandong Peninsula,has been described on the basis of echo sounder bathymetry,side-scan sonar and high-resolution seismic data sets.The bank is in NWW direction,approximately parallel to the coastline.The bank consists of sandy silt or clayed silt.Sand waves and megaripples are observed on the north side,which result from strong tidal currents around the headland and storm waves in winter.These bed forms indicate that the bank is influenced by the modern hydrodynamics.The bank is separated from the coast and Holocene subaqueous clinoform around the Shandong Peninsula in its east part.High-resolution seismic profiles reveal that the bank was formed during two periods:the earlier seismic unit Ua,and later seismic units Ub and Uc which overlays Ua with erosional surfaces on its south side and north side,respectively.As comparing with the clinoform,the bank has a different internal architecture.In the west of the bank,however,topography and surface sediment characteristics suggest that the bank links to the clinoform.The authors propose that seismic Ua is a residual part of early clinoform deposit.After the sediments in the north and south of Ua were eroded by strong currents,the Ub and Uc started to deposit probably by a complex hydrodynamic process.These results provide new insights into the evolution of the bank and its relation with the Holocene subqueous clinoform.  相似文献   

4.
The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion of the solution in spherical harmonics and truncation at low order. The normal modes are the well-known Rossby–Haurwitz (RH) waves, which represent the natural oscillations of the system. Triads of RH waves, which satisfy conditions for resonance, are of critical importance for the distribution of energy in the atmosphere.
We show how non-linear interactions of resonant RH triads may result in dynamic instability of large-scale components. We also demonstrate a mathematical equivalence between the equations for an orographically forced triad and a simple mechanical system, the forced-damped swinging spring. This equivalence yields insight concerning the bounded response to a constant forcing in the absence of damping. An examination of triad interactions in atmospheric reanalysis data would be of great interest.  相似文献   

5.
Surface water waves in coastal waters are commonly modeled using the mild slope equation. One of the parameters in the coastal boundary condition for this equation is the direction at which waves approach a coast. Three published methods of estimating this direction are examined, and it is demonstrated that the wave fields obtained using these estimates deviate significantly from the corresponding analytic solution. A new method of estimating the direction of approaching waves is presented and it is shown that this method correctly reproduces the analytic solution. The ability of these methods to simulate waves in a rectangular harbor is examined.  相似文献   

6.
Ocean wave characteristics around New Zealand   总被引:1,自引:1,他引:0  
Nearly 17 years wave records from deep water and shore‐based stations are used to describe the ocean wave characteristics around New Zealand. The wave environment is dominated by west and southwest swell and storm waves generated in the temperate latitude belt of westerly winds. As a result, the west and south coasts are exposed, high energy shores, the east coast is a high energy lee shore, and the northern coast from North Cape to East Cape is a low energy lee shore sheltered from these winds and waves. South of New Zealand, wave energies are extremely high; the prevailing deep water wave is 3.5–4.5 m high and has a 10–12 s period, with a slight increase in wave heights in winter.

The west coast wave environment is mixed, and consists of locally generated westerly and southerly storm waves, and swell waves generated to the south. The prevailing wave is t.0–3.0 m and 6–8 s period. There are no strong seasonal rhythms, only shorter period cycles of wave height (5 day) associated with similar quasi‐rhythmic cycles in the weather.

The east coast also has a mixed wave climate with southerly swells, originating in the westerlies south of New Zealand, and locally generated southerly and northerly storm waves. The prevailing wave is 0.5–2.0 m and 7–11 s period. A short period rhythmic cycle, similar to that on the west coast, is superimposed on a weak seasonal cycle. The seasonal, cycle results from an increase in the frequency of local northerly waves in summer.

The prevailing wave on the north coast is a northeasterly, 0.5–1.5 m high and 5–7 s period. Subtropical disturbances and southward‐moving depressions generate a mixed wave environment and a possible seasonally reflecting a winter increase in. storminess.  相似文献   

7.
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model.The results show that radiation stress can cause both set-up and set-down in the storm surge.Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction;wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights.The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast.The occurrence of set-down can be also explained by the divergence of the radiation stress.The maximum wave-induced set-up occurs on the right side of the Typhoon path,whereas the maximum wave induced set-down occurs on the left side.  相似文献   

8.
Geostrophic adjustment of a two-layer fluid near a straight coast is investigated for an initial pressure disturbance which has no closed geostrophic contours by using a reduced gravity (divergent barotropic) model. Propagation of a volume of water along the coast due to the internal Kelvin wave allows a non-zero solution for the final geostrophic state. Energy partitions among geostrophic motion, the internal Kelvin wave and internal Poincaré waves are obtained and compared with the result of the classical problem of geostrophic adjustment without the coast. It is found that energy partition to the geostrophic motion (EPG) with the coast is always smaller than that without the coast (EPG ), while the scale of the initial disturbance is the same. The difference betweenEPG andEPG is smaller than the energy partition to the internal Kelvin waves (EPK) and approachesEPK as the scale of the initial disturbance increases.  相似文献   

9.
《Coastal Engineering》2006,53(2-3):243-254
The wave-driven alongshore sediment transport is commonly supposed to smooth out the irregularities on the coastline. However, it has been shown that waves approaching the coast with a high angle with respect the shore-normal can reverse that tendency and cause the rectilinear coast to be unstable [Ashton, A., Murray, A.B., Arnault, O., 2001. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414, 296–300; Falqués, A., Calvete, D., 2005. Large scale dynamics of sandy coastlines. Diffusivity and instability. J. Geophys. Res. 110, doi:10.1029/2004JC002587]. The extended one-line coastline model presented in the latter paper is here applied to investigate the stability of the Dutch coast. The main aim is testing the hypothesis that the shoreline sand waves observed along this coast could be generated by such an instability. It is found that the Dutch coast has potential for instability. This is most prominent on the Holland coast, followed by the Delta coast and is very weak on the Wadden coast. Whether the instability actually occurs or not depends on the cross-shore bathymetric profile of the shoreline waves. Under the sensible assumption that the bathymetric perturbation is just a shift of the equilibrium beach profile, the Dutch coast is stable. In this case, the mean annual coastline diffusivity is evaluated and it is found to be typically about 0.010–0.015 m2 s 1, that is, roughly smaller by a factor 2 than that predicted by the traditional one-line model. However, the Dutch coast may be unstable with respect to coastline waves with a maximum bathymetric signal at a few hundred meters from the coast. This is shown in one case where the shoals associated with the sand wave are inside the surf zone during moderate storm waves. Thus the sand waves could result from the cross-shore redistribution of the sand associated with an alongshore series of shoals and bed depressions generated by the alongshore transport in the surf zone. While the generation or not of such shoreline waves by this instability strongly depends on their profile, its propagation once they have been created is less sensitive and is well reproduced by the present model. It is explained why the propagation is to the NE along the Delta and Wadden coasts, why it is faster on the latter and why on the Holland coast there is no clear propagation direction.  相似文献   

10.
Numerical experiments are performed on shelf waves forced by wind stress with a spectral peak around a period of 100 hr. Water depth in the numerical model is a function of offshore distance only and resembles a bathymetric profile off the Fukushima coast. A pair of vortices alined in the offshore direction and a large vortex are reproduced and they propagate southward outside the forced region. Judging from the propagation speed, the former corresponds to the second-mode and the latter to the first-mode shelf waves. In the forced region, the propagation speed of a trough and a ridge is slow, 3–5km hr–1. These propagation characteristics reproduce those observed along the Fukushima coast and this propagation speed corresponds to that of second-and third-mode shelf waves. Thus, it is concluded that the periodical current fluctuations observed in the inshore region along the Fukushima coast are due to motions associated with the second-and third-mode shelf waves.  相似文献   

11.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

12.
2017年9月8日4时49分(UTC),墨西哥瓦哈卡州沿岸海域(15.21°N,93.64°W)发生Mw8.2级地震,震源深度30 km。强震在该海域引发海啸,海啸对震源附近数百千米范围内造成了严重影响。位于太平洋上的多个海啸监测网络捕捉到了海啸信号并详细记录了此次海啸的传播过程。本文选用了近场2个DART浮标和6个验潮站的水位数据,通过潮汐调和分析和滤波分离出海啸信号,对近场海啸特征值进行了统计分析,并采用小波变换分析方法进一步分析了海啸的波频特征。基于Okada弹性位错理论断层模型计算得到了强震引发的海底形变分布,并采用MOST海啸模式对本次海啸事件近场传播特征进行了模拟,模拟结果与观测吻合较好。最后,基于实测和模拟结果,详细分析了此次地震海啸的近场分布特征,发现除受海啸源的强度和几何分布特征影响外,近岸海啸波还主要受地形特征控制,在与特定地形相互作用后波幅产生放大效应,会进一步加剧海啸造成的灾害。  相似文献   

13.
由于折射作用,在波浪近岸传播过程中会出现一种特殊的、沿着岸线传播的波浪,这种波浪被称为边缘波。边缘波平行于岸线传播,其振幅在岸线处最大,在远离岸线的方向,其振幅呈指数型减小,它们的能量基本被限制在离海岸一波长的距离之内,因此边缘波对近岸地区工程、地貌等有着重要影响。本文对边缘波的研究历史、研究进展进行了阐述,主要介绍了以下几个方面:(1)基于不同控制方程、不同地形上的边缘波理论;(2)实际观测到的边缘波特性;(3)物理模型试验中边缘波的造波方式以及观测到的边缘波特性;(4)数值模拟方法在边缘波研究中的应用。最后,展望了边缘波在未来的研究趋势。  相似文献   

14.
海南岛西部岸外沙波的高分辨率形态特征   总被引:12,自引:1,他引:12  
利用SIMRAD-EM3000多波束探测系统和DGPS定位系统,对海南岛东方岸外的沙波沙脊区进行了高精度探测,分析结果表明:从海岸到陆架底形具有明显的分带性,依次出现弱侵蚀底形段、沙波沙脊底形段和平坦底形段。沙波仅发育于沙波沙脊段,介于水深20~50 m之间,沙波形态有二维与三维两种,沙波波高多为0.7~2.5 m,波长20~70 m,沙波指数(L/H)为20~60,对称指数为1~3;沙波沙脊区沉积物的搬运方向有明显的规律性,在沙脊的西侧,沉积物主要向北搬运;在沙脊的东侧,沉积物主要向南搬运;沙波的形成和发育主要受潮流场控制,热带风暴对其有改造作用。  相似文献   

15.
General characteristics of topographically trapped subinertia waves are discussed from the viewpoint of an eigenvalue problem and ray theory. Special attention is paid to the slope parameterS(x) (=(dh/dx)/h, wherex denotes the coordinate perpendicular to the shoreline, increasing seaward, andh(x) is the depth) which is a measure of the strength of the restoring force of the waves. Three cases for theS distribution are considered, in whichS is assumed to be positive at the coast and to tend to zero far from the coast. The first is whereS(x) decreases monotonically towards the open ocean. It is found in this case that waves are trapped near the coast. The second is whereS(x) does not decrease monotonically, but has a maximum. It is concluded that this case may contain two types of waves, i.e., those trapped near the coast and those trapped near the maximum, and the dispersion curves corresponding to different types may nearly intersect, namely, result in “kissing”. The third is whereS(x) has a negative region (corresponding to the presence of a trench). It is found in this case that an infinite sequence of waves is trapped in the negativeS region which propagate with the coast to their left (right) in the northern (southern) hemisphere besides the waves trapped near the coast. The topography in the second case corresponds to a typical continental shelf and a typical continental slope. It is shown by model calculation that trapped waves are present over the continental slope as well as over the continental shelf. Almost the same results are obtained for superinertia waves ifS is replaced by 1/h which is a measure of the restoring force of superinertia waves.  相似文献   

16.
基于2018年10月21日至11月6日莱州湾西岸连续站观测数据,本文利用集合经验模态分解、希尔伯特?黄变换和小波分析法对底层单宽输沙率的小尺度特征做分析,并针对观测期间出现的大风天气对泥沙输运的影响进行了探究。结果表明,单宽输沙率在观测时间段内具有高频、潮周期、低频以及长周期尺度变化特征,周期尺度从小到大。其中高频和潮周期分量方差贡献率及所含能量最高,对输沙率的影响最强。边际谱显示东西方向输沙率的显著周期为13.3 h,南北方向大于11 h的周期较为显著。观测期间底层净泥沙通量分别为东向305.77 kg/m、南向597.25 kg/m,余流分量贡献最大,低频和高频分量贡献最小。上强迫风场主要在风速衰减期通过湍流和波浪影响输沙速率的时频分布,使其低频变化显著增强的同时,产生1 h周期左右的高频波动。交叉小波分析显示,风速和单宽输沙率在低频波段上相干性较强,且单宽输沙率会滞后风速1/4至1/2个周期。另外,风浪会增强泥沙输运的涨落潮不对称性,进而增加潮周期分量上的泥沙净输运。  相似文献   

17.
We perform the numerical analysis of the intensification of tsunami waves in the course of their propagation from the open part of the Black Sea to the shelf zone. For this purpose, we use a one-dimensional model of nonlinear long waves taking into account the effect of bottom friction. We study four profiles of the bottom corresponding to the south coast of the Crimean Peninsula and establish the predominant role of the bottom pattern and insignificant contribution of nonlinearity to the transformation of waves in the process of their propagation in the direction of the coast. Down to depths of 50 m, all changes in the height of waves are described by the Green law. For the evaluation of vertical run-up of waves, it is important to take into account nonlinear effects. The highest vertical run-ups of waves are observed in the parts of the shelf zone located near Yalta and Alushta. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

18.
Satellite-derived sea surface temperatures illustrate the variability of the path of the Tsushima Current in the Sea of Japan. In the spring of 1981 the Tsushima Current did not split as it left the Korea Strait and flowed into the Sea of Japan, which is contrary to the historical concept of branching. Warm water remained along Honshu, the main island of Japan, making a strong front oriented in an east-west direction. Hydrographic data confirm that this spring condition lasted through to the fall of 1981. On the other hand, during the springs of 1982 and 1983 the branching is evident from satellite images: one branch flowed northward along the east coast of Korea, and the other flowed eastward along Honshu of Japan.  相似文献   

19.
S. V. Muzylev 《Oceanology》2006,46(4):465-471
Edge waves in an ice-covered sea at a straight coast with a sloping beach are analyzed within the linearized theory. Such waves propagate along the coast with an amplitude which exponentially decays offshore. The problem is examined without using the hydrostatic assumption. The seawater is considered to be a homogeneous, inviscid, nonrotating, and incompressible fluid. Ice with a uniform thickness is considered, with constant values of density, cylindrical rigidity, Poisson ratio, and compressive stress in the ice. The normal velocity at the bottom is zero; the linearized kinematic and dynamic boundary conditions are satisfied at the lower surface of the ice. Explicit solutions for the edge flexural-gravity waves and the corresponding dispersion equations are obtained and analyzed.  相似文献   

20.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号