首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

2.
In the paper, we introduce Allegre's scaling-rule theory of rock fracture and the probability to develop a method for predicting earthquake occurrence time on its basis. As an example, we study the characteristics of seismological precursors (seismic spatial correlation length and coda Qc) associated with the earthquake (M=6.1) occurred in Shandan-Minle, Gansu Province. The results show an increasing trend of seismic spatial correlation length and coda Qc before the earthquake. And a power exponent relation is used to fit the increasing variation form of these two parameters. The study has provided a basis for creating a method and finding indexes to predict the earthquake occurrence time by using the monitored seismic spatial correlation length and coda Qc.  相似文献   

3.
Coda wave quality factor (Q c ) was investigated by using digital data (100 sample sec–1) recorded by a vertical component short-period station installed for this study. The station was located in the greater Fairbanks area in central Alaska. From several hundred earthquakes recorded by this station in about a year, 27 earthquakes were selected for the above study; 7 of these selected earthquakes were located along the Alaska Wadati-Benioff zone (Pacific plate). The other 20 earthquakes were located in the area of intraplate seismicity (North American plate). The data was filtered using 9 pass-bands with center frequency varying from 1.5 Hz to 16 Hz with octave bandwidth. The values ofQ c obtained from the coda amplitude decay rates measured on the filtered data after corrections due to the recording instrument and source-receiver separation show appreciable frequency dependence. The value ofQ c varies in the range of 253 and 1190 corresponding to the frequency interval from 1.5 Hz to 16 Hz for the study area. This variation is close to that reported by others for the Kanto region of Japan. Moreover, the characteristics ofQ c obtained in the present case seem to be independent of epicentral distance and hypocentral depth.  相似文献   

4.
Using simulated coda waves, the resolution of the single-scattering model to extract codaQ (Q c ) and its power law frequency dependence was tested. The back-scattering model ofAki andChouet (1975) and the single isotropic-scattering model ofSato (1977) were examined. The results indicate that: (1) The inputQ c models are reasonably well approximated by the two methods; (2) almost equalQ c values are recovered when the techniques sample the same coda windows; (3) lowQ c models are well estimated in the frequency domain from the early and late part of the coda; and (4) models with highQ c values are more accurately extracted from late code measurements.  相似文献   

5.
Three types of seismic data recorded near Coalinga, California were analyzed to study the behavior of scattered waves: 1) aftershocks of the May 2, 1983 earthquake, recorded on verticalcomponent seismometers deployed by the USGS; 2) regional refraction profiles using large explosive sources recorded on essentially the same arrays above; 3) three common-midpoint (CMP) reflection surveys recorded with vibrator sources over the same area. Records from each data set were bandpassed filtered into 5 Hz wide passbands (over the range of 1–25 Hz), corrected for geometric spreading, and fit with an exponential model of amplitude decay. Decay rates were expressed in terms of inverse codaQ (Q c –1 ).Q c –1 values for earthquake and refraction data are generally comparable and show a slight decrease with increasing frequency. Decay rates for different source types recorded on proximate receivers show similar results, with one notable exception. One set of aftershocks shows an increase ofQ c –1 with frequency.Where the amplitude decay rates of surface and buried sources are similar, the coda decay results are consistent with other studies suggesting the importance of upper crustal scattering in the formation of coda. Differences in the variation ofQ c –1 with frequency can be correlated with differences in geologic structure near the source region, as revealed by CMP-stacked reflection data. A more detailed assessment of effects such as the depth dependence of scattered contributions to the coda and the role of intrinsic attenuation requires precise control of source-receiver field geometry and the study of synthetic seismic data calculated for velocity models developed from CMP reflection data.  相似文献   

6.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

7.
Based on the single scattering model of seismic coda waves, we have calculated theQ-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used. These earthquakes were recorded from January 1, 1989 to December 31, 1990 at 20 stations. This paper shows the variations of the codaQ-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the codaQ-factors in these two years. The results indicate that codaQ-factor depends strongly on the lapse time and frequency. It is assumed that whenQ C=Q 0fη, for the three time windows of 15–30s, 30–60s and 60–90s, the average values ofQ 0 are 48, 115 and 217; and the average values ofη are 0. 89, 0.91 and 0.74, respectively. Contribution No. 95A0009, Institute of Geophysics, SSB, China. This work is a contract subject 85-04-01-02 of the State Seismological Bureau, China.  相似文献   

8.
785 traces of vertical components from shallow earthquakes recorded by 10 CDSN (Chinese Digital Seismographic Network) stations and 5 GSN (Global Seismographic Network) stations were collected to study the attenuation characteristics ofL g coda in the Chinese continent and its adjacent regions. The records were processed first using the stack spectral ratio method to obtain the average values ofQ 0 (Q at 1Hz) and η, the frequency dependence, ofL g coda in the ellipses corresponding to the paths. The back-projection technique was then employed to obtain the tomographic maps ofQ 0 and η values, and the distribution of their errors. Results indicate that in the studied areaQ 0 varies between 200 and 500. The lowest value ofQ 0 exists in the Yun-nan-Tibetan region, while the highest value ofQ 0 occurs in the southern edge of Siberian platform. η varies between 0.3 and 0.8. For most part of the studied area η varies inversely withQ 0.  相似文献   

9.
Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQ c (codaQ) in the hypothesis of singleS toS backscattering.Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.  相似文献   

10.
Based on the scattering coda model by which local and regional earthquakes are interpreted (K. Aki, 1969), and using observational coda data of 68 aftershocks of the 1985 Luquan, Yunnan earthquake registered by the VGK seismographs installed at 12 stations in the Yunnan regional short-period network, theQ-values of coda waves are calculated respectively for 6 time intervals. It is observed that within the frequency range of 0.40–1.65 Hz of the observed data, theQ-values are closely related with the frequencies and the calculated codaQ ranges between 80–240 with the coefficient of frequency dependence η=0.45. The calculated source factorsB(f> p) of the coda waves which indicate the scattering strength are mostly within the order 10?23–10?24. Areas with lowQ-values present high scattering. It should be noted that by comparing data obtained before and after the Luquan earthquake, clear changes can be detected in theQ-values measured at stations close to the epicentral region, and that theQ-values of the aftershock coda are less than about one half of the pre-shock values. It may be mentioned that the time-dependent regional variations of theQ-values might possibly bring about practical significance in earthquake prediction. Moreover, aftershock focal parameters are determined. Through discussions on the quantitative relations between the focal parameters, we get: 1gE=1.59M L+ 11.335;E=(2.10 × 10?5)M 0; length of focal rupturea=0.40?0.80 km for 3.0≤M L<5.0 events; stress drop Δσ=(6.0–130) ×105 Pa. Through interpretation of the data, we have also learned the important characteristics that there is no linear relation between the stress drops and the earthquake magnitudes.  相似文献   

11.
The dependence of coda attenuationQ c on frequency and lapse time was studied. Data from small local earthquakes, recorded at three stations (VMR, VSI and VFI) of the VOLNET network operating in central Greece, were used.Q c was estimated by applying the single scattering model to bandpass-filtered seismograms, over a frequency range of 1 to 12 Hz. Analysis was performed every 10 s until the end on overlapping time windows.Q c is found to depend on frequencyf in Hz according to a power law,Q c =Q 0 f n . ObservedQ 0 ranges from 30 to 100 and the powern ranges from 0.90 to 0.70.Q 0 increases andn decreases with lapse time increasing. A strong dependence ofQ c on lapse time was also found. In the frequency range of 1 to 8 Hz and at a short lapse time,Q c values were found to be similar for all three stations. On the other hand, at the longest analyzed time window (50 s), the estimatedQ c values show a discrepancy which is more obvious at a higher frequency band. The scattering coefficient around the central station VSI is found to range from 0.029 to 0.0041 km–1.Q c from the single scattering model andQ s from the amplitude ratio of directS to coda waves for the VSI station are similar. We believe dependence of coda attenuationQ c on frequency and lapse time is caused by a combination of geotectonic features and depth variation asQ s .  相似文献   

12.
Based on the empirical formulation formed from coda observations, the digital waveforms from 33 local events with magnitude M L ranging between 2.1 and 3.5, recorded at Changli station of Beijing Telemetered Seismographic Network from 1989 to 1991, are used to compute coda Q for the Changli region and the source factors of all earthquakes by single-station coda method. Furthermore, assuming a certain source model, we have obtained the station site frequency response and source spectra, as well as source parameters such as corner frequencies, seismic moments and stress drops and so on. Their variations with time are monitored before and after larger earthquakes. Because the coda method can more effectively reduce the influence of source radiation pattern and a particular propagation path than direct wave method, more data can be used and more accurate results can be obtained, which provided a possible approach to study the source properties and reveal the variation of source parameters before larger earthquakes. Contribution No. 97A0107, Institute of Geophysics, SSB, China.  相似文献   

13.
For earthquakes (ML≥2.0) that occurred from January 2006 to October 2018 around the MS5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen, Sichuan province, China, we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the MS5.7 Xingwen event. The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation. We investigated the spatial distribution of P-values in the region around the epicenter of the MS5.7 Xingwen event, and obtained a result exhibiting a extremely low-P-value region. The MS5.7 event occurred inside near the northern boundary of this region. Furthermore, we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values (less that 0.1%), i.e., significant correlation, were calculated for earthquakes that occurred before the MS5.7 Xingwen earthquake. Among sixty-one earthquakes with the lowest P-value, occurred from May 2014 to April 2018, a vast majority of them occurred during the acceleration of Earth's rotation. The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the MS5.7 Xingwen earthquake.  相似文献   

14.
Based on the single scattering model of seismic coda waves, we have calculated theQ-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used. These earthquakes were recorded from January 1, 1989 to December 31, 1990 at 20 stations. This paper shows the variations of the codaQ-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the codaQ-factors in these two years. The results indicate that codaQ-factor depends strongly on the lapse time and frequency. It is assumed that whenQ C=Q 0fη, for the three time windows of 15–30s, 30–60s and 60–90s, the average values ofQ 0 are 48, 115 and 217; and the average values ofη are 0. 89, 0.91 and 0.74, respectively.  相似文献   

15.
Coda of local earthquakes that occurred during 2006–2007 are used to study the attenuation characteristics of the Garhwal–Kumaun Himalayas. The coda attenuation characteristics are represented in terms of coda Q or Q c . It is observed that Q c increases with frequency. Q c also varies with increase in lapse time of coda waves. Q c increases up to an 85-s average lapse time. This is similar to observations around the world reported by many workers who have interpreted this as a manifestation of the fact that heterogeneity decreases with depth. However, around a 90-s average lapse time Q c is lower than its values for lower and higher average lapse times. This is interpreted as an indication of possible presence of a fluid-filled medium or a medium having partial melts at around a 160-km depth. Q 0, i.e., Q c at 1 Hz, increases, and frequency parameter n decreases with increasing lapse time, barring around a 90-s lapse time. This again shows that in general, heterogeneity decreases with increasing depth. The Q 0 and n values for smaller lapse times are similar to those for tectonically active areas. By comparing Q c values obtained in this study with those obtained by us using the 1999 Chamoli earthquake aftershocks, it is concluded that the crust is turbid and the mantle is more transparent. However, whether the variation in Q c values between 1999 and 2006–2007 is temporal or not cannot be definitely established from the available data set.  相似文献   

16.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

17.
The digital seimograph network set up by China and France in Zhangye of China had been operated in 1988. The Zhangye network is situated in the middle segment of Hexi corridor and Qilina mountain, which was regarded as a monitoring earthquake area. Using the records of Zhangye digital network theQ-values in and around Minle basin have been measured. The results of this study showed that theQp-values range from 500 to 780, andQs-values range from 230 to 460. TheQ-values of inside of Minle basin are higher than that around the basin. The greater parts of moderate and strong earthquakes occurred along tectonic belts around the Minle basin. Moreover, TheQ-values increased with the depth of penctration of wave ray. The attenuation of S wave is stronger than P wave in shallow layer of crust. Some problems ofQ-value change versus time before and after Sunan eathquake (M s=5.7) have been also disscussed. These results can be applied to study and to monitor seismic danger of the Minle monitoring area. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 296–302, 1993.  相似文献   

18.
通过测量介质品质因子来开展大同窗附近测震台站记录P波衰减频散特征的研究,并分析大同窗近场区和外围区震例前后的变化。对山自皂台记录的2001年以来大同窗地震序列的研究结果表明,近场区3次和外围区6次地震前,介质品质因子显示超出1倍均方差的高值变化特征,震后逐渐恢复到背景起伏状态;与大同窗传统的频次指标相比,介质品质因子的映震效果更好;阳原台的结果表明,仅近场区1次和外围区2次地震前,介质品质因子显示超出1倍均方差的高值变化特征,且有虚报、漏报。所处地质构造位置不同、传播路径介质差异可能是引起上述两个台站附近介质品质因子的地震对应效果明显不同的原因。  相似文献   

19.
In this paper, the "spectral amplitude ratio method" (SAR), "energy method" (EN) and "coda wave method" (CW) are used to calculate theQ value variations of gneiss in the preparing rupture process. The obtained results show that the variation state ofQ values by SAR features the shape of relative stability—gradual increment to the maximum—then decrement and final rupture. The variation state ofQ values by EN is just contrary to that by SAR, i. e. with the shape of stability—decrement—increment—and final rupture. The varation state ofQ values by CW is similar to that by EN, its main frequency features the shape of relatively high value—decrement to the minimum—increment—and final rupture. But to the high frequency (higher than the main frequency), the variation state ofQ values features the shape of the stable value-increment to the maximum-decrement-and final rupture. At the same time, the results by coda wave amplitude spectrum show that, when stress reaches 70% of rupture stress, the high frequency component of S wave rapidly reduces (Q c increasing); at the time of impending the main rupture, the main frequency component reduces with a large scale (Q c increasing again), this may be the reason which causes the different variation states of two codaQ values. The result of amplitude spectra of P, S (initial wave) waves also show that with the appearance of microcracks the frequency band of S wave turn to be narrow, the high frequency component is reduced quickly, i. e. the S wave spectra have different variation states with different frequency components. That is why theQ s obtained by different methods have different variation characteristics.  相似文献   

20.
—Broad band digital three-component data recorded at UNM, a GEOSCOPE station, were used to estimate Lg coda Q for 34 medium size (3.9 ≤m b ≤ 6.3) earthquakes with travel paths laying in different geological provinces of southern Mexico in an effort to establish the possible existence of geological structures acting as wave guides and/or travel paths of low attenuation between the Pacific coast and the Valley of Mexico. The stacked spectral ratio method proposed by XIE and NUTTLI (1988) was chosen for computing the coda Q. The variation range of Q 0 (Q at 1?Hz) and the frequency dependence parameter η estimates averaged on the frequency interval of 0.5 to 2?Hz for the regions and the three components considered are: i) Guerrero region 173 ≤ 0≤ 182 and 0.6 ≤ 0 ≤ 0.7, ii) Oaxaca region 183 ≤ 0 ≤ 198 and 0.6 ≤ 0 ≤ 0.8, iii) Michoacan-Jalisco region 187 ≤ 0 ≤ 204 and 0.7 ≤ 0 ≤ 0.8 and iv) eastern portion of the Transmexican Volcanic Belt (TMVB) 313 ≤Q 0≤ 335 and η = 0.9. ¶The results show a very high coda Q for the TMVB as compared to other regions of southern Mexico. This unexpected result is difficult to reconcile with the geophysical characteristics of the TMVB, e.g., low seismicity, high volcanic activity and high heat flow typical of a highly attenuating (low Q) region. Visual inspection of seismograms indicates that for earthquakes with seismic waves traveling along the TMVB, the amplitude decay of Lg coda is anomalously slow as compared to other earthquakes in southern Mexico. Thus, it seems that the high Q value found does not entirely reflect the attenuation characteristics of the TMVB but it is probably contaminated by a wave-guide effect. This phenomenon produces an enhancement in the time duration of the Lg wave trains travelling along this geological structure. This result is important to establish the role played by the transmission medium in the extremely long duration of ground motion observed during the September 19, 1985 Michoacan earthquake. ¶The overall spatial distribution of coda Q values indicates that events with focus in the Michoacan-Jalisco and Oaxaca regions yield slightly higher values than those from Guerrero. This feature is more pronounced for the horizontal component of coda Q. A slight dependence of average coda Q ?1 on earthquake focal depth is observed in the frequency range of 0.2 to 1.0?Hz approximately on the horizontal component. Deeper (h > 50?km) events yield lower values of Q ?1 than shallower events. For frequencies higher than 1.0?Hz no clear dependence of Q ?1 on focal depth is observed. However, due to the estimates uncertainties this result is not clearly established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号