首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Late Paleocene–middle Miocene pelagic limestone/chert sequences from the Mineoka Tectonic Belt, Boso Peninsula, central Japan, were biostratigraphically studied for planktic foraminifer fossils for the first time. The rock units are included as several isolated blocks tectonically within the ophiolitic mélange together with the Mio-Pliocene Honshu arc-derived terrigenous and Izu Arc-derived volcaniclastic materials. The pelagic sequences are grouped into the newly proposed Kamogawa Group which is subdivided into the Paleocene Nishi Formation, Eocene–Oligocene Heguri-Naka Limestone and early–middle Miocene Shirataki and Heguri Formations. This study of Kamogawa Group pelagic sequences throws new light on tectonic modeling of plate accretion to the unique trench–trench–trench (TTT)-type triple junction area off the Boso Peninsula. Different formations of the Kamogawa Group have different tectonic and paleogeographic significances for the oceanic plate with a seamount that was approaching the Izu and Honshu arcs during Pacific plate subduction, and that was accreted to the Honshu Arc during the middle Miocene.  相似文献   

2.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   

3.
Abstract The Cansiwang Melange underlies the Southeast Bohol Ophiolite Complex (SEBOC) and is composed mainly of sheared ophiolite-derived blocks such as harzburgites, microgabbros, basalts and cherts in a pervasive serpentinite matrix. Available field, as well as geophysical evidence show that this melange unit is not diapiric, nor does it have a sedimentary origin considering that it lacks slump and flow structures. A tectonic origin for the Cansiwang Melange is favored in view of the numerous thrust faults, which cut across the exposures, as well as the tectonic contacts that the melange has with the overlying and underlying formations. The presence of the Cansiwang Melange in between the SEBOC and the Alicia Schist provides evidence that the amphibolite of the Alicia Schist do not correspond to the metamorphic sole of SEBOC. Similar to what is recognized in the Josephine Ophiolite, this suggests a 'cold' emplacement of the ophiolite over the Alicia Schist. The Cansiwang Melange represents an accretionary prism product which marks the location of an ancient subduction zone in what is now Central Philippines.  相似文献   

4.
In the East Ligurian segment of the North Apennines, eugeosynclinal sequences which contain ophiolitic rocks have been tectonically emplaced onto approximately coeval miogeosynclinal sediments. These allochthonous sequences represent the floor of a Mesozoic ocean which closed during the early Tertiary. The ophiolitic rocks consist of serpentinite, gabbro, pillowed and massive basalts, and breccias derived from these lithologies. They are overlain with depositional contacts by Upper Jurassic-Cretaceous pelagic cherts, limestones, and a shale/limestone sequence.The ophiolitic breccias attain thicknesses up to 100 m and strike lengths up to a few kilometres, and consist largely of unorganized accumulations of sand- to block-sized clasts. Compositions at specific horizons may range from oligomict breccias containing gabbro, basalt, or serpentinite fragments, to polymict breccias consisting of any mixture of these lithologies. Most of the breccias probably represent slow talus accumulations at the base of major submarine fault scarps which have exposed gabbro and serpentinite to submarine erosion. Direct exposure of gabbro and serpentinite on the ocean floor is also indicated by the occurrence of stratigraphically intact contacts between these lithologies and overlying pelagic sediments (generally cherts). The distribution and thickness of the breccias and volcanics, and the distribution of the gabbro and serpentinite, can vary greatly within distances of a few kilometres, thus producing complex heterogeneous sequences consisting of laterally impersistent lithological units.Recent observations and deep drilling of the Mid-Atlantic Ridge and other rifted ridges have revealed occurrences of significant thicknesses of basaltic, serpentinitic, and gabbroic breccias upon and within the volcanic layer of the oceanic crust, as well as the direct submarine exposure of plutonic rocks. It is therefore likely that the East Ligurian sequences represent parts of rifted ridge-generated crust. If so, then the complexity of the East Ligurian sequences suggests that the upper part of rifted ridge-generated crust may in places possess large variations in its stratigraphy over small (<10 km2) areas.Smooth, non-rifted (fast-spreading) ridges, which have very reduced topography and lack major fault scarps, should form ophiolitic complexes deficient in breccias containing fragments of plutonic igneous rocks. Most large ophiolitic complexes do not contain plutonic rock-bearing breccias, and were therefore probably formed at smooth ridges. The apparently preferential preservation of this type of ophiolitic complex, as opposed to the rifted ridge-type crust in East Liguria, may be related to the less pervasive and less intense fracturing of smooth ridges. This resulted in greater “cohesion” and lateral continuity of smooth ridge-generated crust during later tectonic emplacement into allochthonous positions in orogenic belts.  相似文献   

5.
Geological observations in the central part of Tokunoshima in the Amami Islands, Southwest Japan, reveal that discrete layers of serpentinite, dioritic gneiss, and amphibolite are intercalated into pelitic schist and these rock bodies form a northwest‐dipping tectonic stack. A subhorizontal psammitic schist layer overlies them. These rocks underwent ductile deformation that is denoted by penetrative foliation and mineral lineation. Microstructures of the sheared metamorphic rocks and serpentinite indicate top‐to‐the‐east, ‐southeast or ‐south (hanging‐wall up) displacements. The en echelon array of rock bodies is interpreted as a duplex with the psammitic schist layer on its top and the pelitic schist layer on its bottom. It is inferred that the serpentinite‐bearing duplex was formed due to the tectonic erosion and the subsequent accretionary growth operated in a Cretaceous or older subduction zone. Tokunoshima has been considered to belong to the Shimanto Belt. However, regional low‐pressure and high‐temperature type amphibolite‐facies metamorphism and related ductile deformation have not been recognized in the other areas of the Shimanto Belt. There is no metamorphic rock occurrence comparable to that of Tokunoshima in the neighboring islands. The metamorphic rocks in Tokunoshima can be correlated to any of low‐pressure/temperature type metamorphic regions in Kyushu.  相似文献   

6.
The presently active sinistral Xianshui He strike-slip fault (XSH) is a lithospheric scale strike-slip fault in the eastern Himalaya. In the study area this fault affects the eastern edge of the Konga Shan granitic massif, where it has caused both brittle and ductile deformation. A RbSr isochron and Nd and Pb isotope study of three samples, and a UPb zircon study of a single sample, were completed on the granite.

UPb data indicate a granite emplacement age of 12.8 ± 1.4 Ma. The RbSr isochrons show that the granite emplacement and the deformational event were synchronous, at around 12-10 Ma (minimum age for deformation). The Nd and Pb isotope compositions of whole rocks and K-feldspars indicate the involvement of Proterozoic continental crust, which is confirmed by UPb systematics indicating inherited zircons.

Sinistral faulting along the XSH began at the latest at 12 Ma and marks the extrusion toward the east of the West Sichuan and South China blocks, following their extrusion along the Red River fault zone between 50 and 21 Ma.  相似文献   


7.
Most serpentinitized peridotite in orogenic belts is derived from oceanic lithosphere, but the emplacement mechanisms of these rocks vary greatly, as illustrated by the nature of these rock bodies and their contacts. The diverse emplacement mechanisms have important implications for connecting ophiolitic rock occurrences to large‐scale orogenic processes. In the California Cordillera, the largest bodies of ultramafic rocks are parts of ophiolite sheets, such as the Coast Range ophiolite (CRO), that were part of the upper plate of an oceanic subduction system. Such units differ from smaller bodies within subduction complexes such as the Franciscan Complex that were transferred from the subducting plate to the subduction complex during accretion. Some intra‐subduction complex ultramafic rocks occur as nearly block‐free sheets within the Franciscan Complex, and as a part of mafic–ultramafic imbricates or broken formations within the Shoo Fly Complex of the northern Sierra Nevada. Franciscan Complex serpentinite also occurs as sedimentary serpentinite mélange that was partly subducted after deposition in the trench via submarine sliding. Such mélanges include blocks that record older and higher grade metamorphism than the matrix. Sedimentary serpentinite mélange that includes high‐pressure metamorphic blocks is also found in the basal Great Valley Group forearc basin deposits depositionally overlie the CRO. Distinguishing the different serpentinite origins is difficult in the California Cordillera even though a terminal continental collision did not affect this orogenic belt. In more typical orogenic belts with greater post‐subduction disruption, distinction between the types of serpentinite occurrences presents a greater challenge.  相似文献   

8.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   

9.
Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif, especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that: (1) Diancangshan deep metamorphic rock has experienced early high-temperature left-lateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing; (2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and (3) the fluid is quite active during the syn-tectonic shearing overprinted low-temperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif.  相似文献   

10.
Abstract The Miura Group (Miocene-Pliocene) of south-central Japan shows a number of unique lithological and structural features. The group is composed of volcanic arc-derived marine sediments, and those in the south of the Mineoka Tectonic Belt particularly show various kinds of complex structures such as layer-parallel faults, thrust duplexes, imbricate thrusts and vein structures, yet the degree of compaction of the sediments is still remarkably low. These structures involve deformations at a very early stage and at shallow depths. They arose shortly after sedimentation within the Izu fore arc, and continued during accretion to the Honshu fore arc. The deformational stages are classified here into three stages, the first comprises bedding-parallel faulting associated with gravitational sliding and sediment injection. The first vein structures formed during this stage in the Izu fore arc area. These structures are cut by features developed during the second and third stages: especially thrusting, including duplex and imbricate thrusts. This horizontal shortening occurred during the accretionary prism formation on the subduction plate boundary. The second vein structures formed during this stage in the accretionary prism formation. The origin of the vein structures was discussed both by field observation and laboratory experiments. The latter suggests earthquake origin and the formative process is explained in relation to the field evidence.  相似文献   

11.
Neoproterozoic igneous and metamorphic complexes occur as tectonic domes in the Longmen Mountains of the western margin of the Yangtze Block, and are important in reconstructing the Rodinian supercontinent and constraining the timing and mechanism of tectonic denudational processes. The Pengguan dome consists of granitic intrusions and metamorphic rocks of the Huangshuihe Group and is tectonically overlain by ductilly deformed Sinian to Paleozoic strata. The plutonic intrusions consist of granites with abundant amphibolite enclaves. New LA-ICP-MS zircon U-Pb dating yielded an emplacement age of 809±3 Ma and a protolith age of 844±6 Ma for the granite. The granitic rocks have geochemical signatures typical of A-type granites, indicating their formation under an extensional environment, by melting of newly formed tonalite-trondhjemite-granodiorite (TTG) rocks. A detachment fault, characterized by variable ductile shear deformation of S-C fabric and ESE-ward kinematics, separates the Pengguan dome from the Sinian-Paleozoic cover. 40Ar/39Ar dating of muscovite from the mylonite in the detachment fault of the dome demonstrates that ductile deformation occurred at ~160 Ma. This study indicates the existence of a Neoproterozoic magmatic arc-basin system, which was denudated by a Jurassic middle crustal ductile channel flow along the Longmenshan thrust belt.  相似文献   

12.
A mass‐transport deposit named MTD1 (up to 100 m in thickness) is intercalated in the upper Kiwada Formation, a Pleistocene forearc basin fill on the Boso Peninsula, east‐central Japan. The present study aims to examine the origin, age, and distribution of MTD1. MTD1 consists mainly of mudstone blocks containing thin very fine‐ to medium‐grained sandstones, and ranges from tens of centimeters to more than tens of meters in length and thickness. Correlation of marker tuff beds and application of the biostratigraphy of calcareous nannofossils suggest that the blocks in MTD1 were derived from the underlying strata. The total thickness of the stratified blocks from the different stratigraphic horizons exceeds 60 m, implying that MTD1 originated from deeply‐excavated slope failure. The slope failure occurred in a short time interval at ca 1.3 Ma. MTD1 provides an estimate of the height of the escarpment on the basis of the stratigraphic origin of the blocks.  相似文献   

13.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

14.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   

15.
太行山北段中新生代断层岩的显微构造研究   总被引:5,自引:0,他引:5       下载免费PDF全文
太行山北段是大兴安岭 -太行山 -武陵山构造带中段的典型构造区 ,区内 2条主断裂 (紫荆关断裂和乌龙沟断裂 )组成的断裂带发育中、新生代的碎裂岩系列断层岩。通过对断裂带内不同岩性原岩区的断层岩进行详细的显微构造研究 ,分析了 3种主要变形强度类型的断层岩 (碎裂化岩石或构造角砾岩、初碎裂岩、碎裂岩 )的区域分布、显微结构以及微观变形机制 ,鉴定出断层岩中的 3期构造变形叠加 ,结合区域资料探讨了区内中、新生代断层岩反映的 3期主要构造运动及其特征 ,显示出构造强度逐渐减弱的演化趋势  相似文献   

16.
Magnetic anisotropy of rocks and its application in geology and geophysics   总被引:49,自引:0,他引:49  
Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization. In massive ore it is due to processes associated with emplacement and consolidation of an ore body as well as to ductile deformation. Hence, it can be used as a tool of structural analysis for almost all rock types. Morcover, it can influence considerably the orientation of the remanent magnetization vector as well as the configuration of a magnetic anomaly over a magnetized body. For these reasons it should be investigated in palaeomagnetism and applied geophysics as well.  相似文献   

17.
Yasu'uchi  Kubota  Toru  Takeshita 《Island Arc》2008,17(1):129-151
Abstract   The Median Tectonic Line (MTL) in southwest Japan, a major east–west-trending arc-parallel fault, has been defined as the boundary fault between the Cretaceous Sambagawa metamorphic rocks and Ryoke granitic and metamorphic rocks, which are unconformably covered by the Upper Cretaceous Izumi Group. The juxtaposition by faulting occurred after the deposition of the Izumi Group. Based on detailed fieldwork and previous studies, the authors reconstruct the kinematic history along the MTL during the Paleogene period, which has not been fully understood before. It is noted that although the strata of the Izumi Group along the MTL dip gently, east–west-trending north-vergent folds with the wavelength of ∼300 m commonly develop up to 2 km north from the MTL. Along the MTL, a disturbed zone of the Izumi Group up to 400 m thick, defined by the development of boudinage structures with the transverse boudin axis dipping nearly parallel to the MTL, occurs. Furthermore, east–west-trending north-vergent folds with the wavelength of 1–5 m develop within the distance up to 60 m from the MTL. The disturbed zone with the map-scale north-vergent folds along the MTL, strongly suggests that they formed due to normal faulting with a top-to-the-north sense along the MTL. Considering that the normal faulting is associated with the final exhumation of the Sambagawa metamorphic rocks, and its juxtaposition against the Izumi Group at depth, this perhaps occurred before the denudation of the Sambagawa metamorphic rocks indicated by the deposition of the Lower Eocene Hiwada-toge Formation. Dynamic equilibrium between crustal thickening at depth (underplating) and extension at shallow level is a plausible explanation for the normal faulting because the arc-normal extension suggests gravity as the driving force.  相似文献   

18.
The relationship between structure and volcanism in the Tongariro Volcanic Centre, New Zealand, is largely masked by a mantle of young volcanic deposits. Here we report the results of an integrated geophysical investigation (using gravity, multi-level aeromagnetic and magnetotelluric methods) of subsurface deposits and structures in the upper 1–2 km across the axis of the Tongariro Volcanic Centre. Modelling of these data across the Tama Lakes saddle shows that the outcropping volcanic deposits are up to 800 m thick, underlain by Tertiary sediments (of a few 10's to a few 100 m in thickness) and in turn lying above a basement of probable Mesozoic greywacke. Basement faulting is shown to be concentrated in the centre of the rift, which is 18 km wide at this location, but no vertical offset is resolved at the rift axis. Vertical displacements on basement faults of 250–300 m are modelled giving a minimum total basement subsidence of 650 m. A 5 km-wide, deep low resistivity zone occurs at the axis of the rift which is interpreted as either resulting from extensive fracturing and/or hydrothermal alteration within the basement. Steep-sided volcanic bodies with a high proportion of lavas/dykes coincide with the Waihi fault and the rift axis. Coincidence with the Waihi Fault suggests that this fault system may have provided magma pathways to the surface and a focus for dyke emplacement, which could have contributed to rift extension. The lack of offset at the rift axis may reflect the juvenile nature of faulting at this location, which is consistent with the notion of a migration of faulting towards the centre of the graben, alternatively, rifting may have been entirely accommodated by dyke emplacement.  相似文献   

19.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   

20.
Macroscopic fracture arrays, microstructures and interpreted deformation mechanisms are used to assess the development of a minor reverse fault (backthrust) in quartzite from the Moine Thrust Zone, Assynt, NW Scotland. Fracturing dominates the faulting via the progression: intragranular extension microcracks; transgranular, cataclasite absent extension fractures; through-going, cataclasite filled shear microfaults, within which fracturing and particulate flow operate. However, both diffusive mass transfer (DMT) and intracrystalline plasticity (low temperature plasticity, LTP) processes also contribute to the fault zone deformation and lead to distinct associations of deformation mechanisms (e.g., DMT-fracture and LTP-fracture or low-temperature ductile fracture, LTDF). Over a large range of scales the fault zone consists of blocks of relatively intact rock separated by narrow zones of intense deformation where fracture processes dominate. The populations of fragments/blocks of different sizes in the fault zone have a power-law relationship which is related to the dimension of the fault zone. These observations are used to develop a general model for fault zone evolution based on the distribution of deformation features as a function of either time or space. A systematic variation in the deformation rate: time histories is recognised, associated with different positions within the fault zone. Thus, the fault zone preserves elements of the birth, life and death sequences associated with the displacement history and strain accommodation.Dedicated to the memory of Will Ramsbotham (1967–93).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号