首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
边坡稳定性对露天煤矿安全高效开采至关重要。在系统总结蒙东地区露天煤矿赋存条件的基础上,提出了该地区露天煤矿边坡的工程地质特征及稳定性影响关键因子。采用正交试验与极差分析法,对该地区露天煤矿边坡稳定性影响因子的敏感度进行了研究。研究结果表明:软弱结构面分布特征、软弱结构面强度及变形特征、地下水疏排效果和综合帮坡角是控制该地区露天煤矿边坡稳定性的关键因子;不同开采阶段边坡稳定性影响因子的敏感性会发生变化,边坡防治策略及重点也应相应调整。   相似文献   

2.
酸性矿井水在我国鲁西南、山西、内蒙、云南和贵州等煤矿区普遍存在,酸性矿井水其pH往往在2~5之间,高SO42?、HB、TDS、Fe、Mn。这些物质进入地下水、地表水或土壤后,会对其造成严重危害。文章选择山西阳泉市典型废弃煤矿区山底河流域为研究区,通过水文地质调查,水文地质钻探,水文地质剖面等方法阐述山底流域地层岩性,水文地质条件概况,得出受煤矿开采影响,与天然条件下相比山底河流域的地表水和地下水的补给、径流、排泄条件均发生了根本变化。补给通过破坏产生的导水裂隙带运移,以垂向运动为主;径流通过坑道,导水裂隙带运移,以横向运动为主;排泄以矿坑排水和泉水溢出方式为主。并简述山底河流域煤矿酸性矿井水试验站观测站分布情况与水化学特征。   相似文献   

3.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

4.
通过对羊草沟煤矿区水资源供需情况及矿井水排放利用情况的调查,指出羊草煤矿对矿井水利用存在的一些问题并提出政策性建议。同时,对羊草煤矿区应该实施矿井水资源的拟建利用项目方案进行构想,表明对矿井水资源的有效利用与合理开发是摆在我们面前的一个非常紧迫和具有重大意义的现实问题。  相似文献   

5.
铜陵矿区主要河流水质分析与污染评价   总被引:1,自引:0,他引:1  
铜陵矿区是长江下游重要的铜铁资源基地,也是典型的含硫多金属矿区,矿山酸性废水是矿业开发活动不可避免的环境问题,对地表水体有很大影响。本文以铜陵矿区主要河流为研究对象,通过野外调查采样和室内测试分析,从常规理化性质、矿山酸性废水和重金属元素三方面分析了的水质现状,采用单因子指数和内梅罗水质指数法进行了污染评价。结果表明:(1)矿区河流污染成分以有机污染和矿山酸性废水污染为主,其次是重金属污染。(2)在检测的46个河段中, 按综合污染指数大小分级,共计有93.48%的河段受到不同程度的污染,其中,水质严重污染的河段占 4.35%,水质重污染的河段占13.04%,水质污染的河段占 65.22%,水质轻污染的河段占10.87%;共计有6.52%的河段水质较好,均为清洁状态。(3)3条河流按污染程度大小依次为新桥河>顺安河>红星河,除顺安河外,其他均受到了矿山酸性废水污染。今后应重点关注矿山酸性废水的污染机理与风险评估,加强矿区水环境保护与恢复治理工作。  相似文献   

6.
To determine the appropriate allocation of resources for the future restoration of the abandoned mining district of Kangwon in Korea, identification of the main pollutants and the main sources discharging these pollutants is crucial. Therefore, a 2-year study was undertaken to quantify the amount of pollutants in the Uchen stream (a potential sink for contamination), which runs through the district, and to determine the potential sources of these pollutants, including mine drainage and soil. Arsenic (As) was the main pollutant in mine drainage and soils showing concentrations above the Korean regulated standard levels of 50 μg L−1 and 50 mg kg−1 for water and soil, respectively. In addition, the pollution index (PI) showed that mine drainages were polluted by As to a moderate (2 ≤ PI < 3) or strong (4 ≤ PI < 5) degree. Consequently, As load in mine drainage and soil contributed to increased amounts of As in the stream. The As loads in mine drainages (11 and 587 g month−1 for mine adit 1 and 2, respectively) accounted for only 9% of the total As load to the stream (6,378 g month−1); and the influence of mine drainages on As contents in the stream was more reliant on the total volume of mine drainage generated rather than the As concentration in the mine drainage. Approximately 91% of the As in the stream was derived from the soils within the study area.  相似文献   

7.
Large amounts of groundwater are discharged during underground mining operations. As a result, the drawdown of groundwater, known as aquifer dewatering, is common in mining areas. Because of variability in permeability between different media in mines, mine drainage occurs primarily as non-continuous flow. However, calculations of mine water yield are usually made based on the continuous flow theory, and therefore often produce erroneous results. This study predicts the water yield of a mine using the module MODFLOW and incorporating the non-continuous flow theory into the calculation. Using this method, the predicted water yield of a mine was approximately 50 % lower than that predicted using the continuous flow theory. The model also demonstrates that the rate of mine drainage varies over time; there is initially a decrease in the rate of drainage which gradually approaches a constant value. Double level flow occurs when there is non-continuous flow in continuous media, which can effectively minimize the influence of mine drainage on upper aquifers and relieve the conflict between groundwater supply and drainage in the mining area.  相似文献   

8.
With the development of mining of iron deposits in China, groundwater invasion and the impacts of groundwater drainage, such as regional groundwater table lowering, overlapping cones of depression, subsidence, and water quality deterioration are environmental problems which endanger mining production and human life. Effective prevention of water invasion or timely determination of the mechanism of water bursting and rational design of drainage plans are the most urgent mining challenges. The mechanism of water invasion and the environment impacts on the groundwater system of the Gaoyang Iron Mine, China were dealt with in this paper. A systematical investigation of the hydrogeological conditions and monitoring of groundwater dynamics of the mine were completed. Results show that the limestone of the middle Ordovician System constitutes the under floor of the iron deposit. This limestone is the main source of water invasion into the mine. Groundwater dynamic equilibrium conditions are broken due to mine drainage. Water invasion and drainage have caused a serious impact on the groundwater environment of the area.  相似文献   

9.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

10.
This work focuses on the geochemical processes taking place in the acid drainage in the Ribeira da Água Forte, located in the Aljustrel mining area in the Iberian Pyrite Belt. The approach involved water and stream sediment geochemical analyses, as well as other techniques such as sequential extraction, Mössbauer spectroscopy, and X-ray diffraction. Ribeira da Água Forte is a stream that drains the area of the old mine dumps of the Aljustrel mine, which have for decades been a source of acid waters. This stream flows to the north for a little over than 10 km, but mixes with a reduced, organic-rich, high pH waste water from the municipal waste water pools of the village. This water input produces two different results in the chemistry of the stream depending upon the season: (i) in the winter season, effective water mixing takes place, and the flux of acid water from the mine dumps is continuous, resulting in the immediate precipitation of the Fe from the acid waters; (ii) during the summer season, acid drainage is interrupted and only the waste water feeds the stream, resulting in the reductive dissolution of Fe hydroxides and hydroxysulfates in the stream sediments, releasing significant quantities of metals into solution. Throughout the year, water pH stays invariably within 4.0–4.5 for several meters downstream of this mixing zone even when the source waters come from the waste water pools, which have a pH around 8.4. The coupled interplay of dissolution and precipitation of the secondary minerals (hydroxides and sulfates), keeps the system pH between 3.9 and 4.5 all along the stream. In particular, evidence suggests that schwertmannite may be precipitating and later decomposing into Fe hydroxides to sustain the stream water pH at those levels. While Fe content decreases by 50% from solution, the most important trace metals are only slightly attenuated before the solution mixes with the Ribeira do Rôxo stream waters. Concentrations of As are the only ones effectively reduced along the flow path. Partitioning of Cu, Zn and Pb in the contaminated sediments also showed different behavior. Specific/non-specific adsorption is relevant for Cu and Zn in the upstream branch of Ribeira da Água Forte with acid drainage conditions, whereas the mixture with the waste water causes that the association of these metals with oxyhydroxide to be more important. Metals bound to oxyhydroxides are on the order of 60–70% for Pb, 50% for Cu and 30–60% for Zn. Organic matter is only marginally important around the waste water input area showing 2–8% Cu bound to this phase. These results also show that, although the mixing process of both acid and organic-rich waters can suppress and briefly mitigate some adverse effects of acid drainage, the continuing discharge of these waste waters into a dry stream promotes the remobilization of metals fixed in the secondary solid phases in the stream bed back into solution, a situation that can hardly be amended back to its original state.  相似文献   

11.
针对夏桥矿(已报废)各水平涌水量较大,拟建立井下蓄排水系统,并利用峰谷时电价差价对矿井排水时段进行优化,以节约排水费用,提出了井下水闸墙上预留放水管数的计算方法,即:探放水管数计算法和水力学计算法2种方法,并对2种方法进行了比较分析。水力学计算法比较符合放水实际,但没有考虑安全余量;探放水管计算法只是粗略概算,但安全系数比较高。实际应用中,宜采用两种方法互相验证,并考虑经济因素综合选定。   相似文献   

12.
Fuzzy logic was applied to model acid mine drainage (AMD) and to obtain a classification index of the environmental impact in a contaminated riverine system. The data set used to develop this fuzzy model (a fuzzy classifier) concerns an abandoned mine in Northern Portugal—Valdarcas mining site. Here, distinctive drainage environments (spatial patterns) can be observed based on the AMD formed in the sulphide-rich waste-dumps. Such environments were established, as the effluent flows through the mining area, using several kinds of indicators. These are physical–chemical, ecological and mineralogical parameters, being expressed in a quantitative or qualitative basis. The fuzzy classifier proposed in this paper is a min–max fuzzy inference system, representing the spatial behaviour of those indicators, using the AMD environments as patterns. As they represent different levels (classes) of contamination, the fuzzy classifier can be used as a tool, allowing a more reasonable approach, compared with classical models, to characterize the environmental impact caused by AMD. In a general way it can be applied to other sites where sulphide-rich waste-dumps are promoting the pollution of superficial water through the generation of AMD. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
 Mining of coal, lead and zinc, gold, and iron ore deposits in karst areas has been closely associated with sinkholes in China. Surface collapse causes an increase in mine water drainage and the possibility of major water inflow from karst aquifers, which threatens the environment in mining areas and endangers mine safety. The origin of such sinkholes is analyzed quantitatively in this paper and a combination of factors including soil weight, buoyancy, suffosion process and vacuum suction can contribute to surface subsidence. The key measures to prevent sinkholes in mining areas are to control the amount of mine drainage, reduce water-level fluctuation, seal off karst conduits and subsurface cavities in the overlying soil, prevent water inflow, and to increase gas pressure in the karst conduits. Received: 2 May 1996 · Accepted: 29 July 1996  相似文献   

14.
The Bunker Hill Mine in Idaho's Coeur d'Alene mining district produces approximately 10 m3/minute of acid water containing high concentrations of heavy metals. Field and laboratory studies indicate that much of the acid water is produced in a single ore body in the upper part of the mine. The ore of this body contains mainly sphalerite, galena, and pyrite in a siderite-quartz gangue. Ground water recharges this ore body through a near-vertical zone of high permeability, which is the result of mining by the caving technique. Ore samples from the caving area contained oxidized forms of iron and produced acid in a laboratory leaching test. Leaching experiments with several ore samples from the mine also indicated that the ratio of pyrite to calcite in the samples strongly controlled the resultant pH values. Oxidation of pyrite to sulfuric acid and compounds of iron is apparently responsible for the production of acid water in the mine. In contrast, dissolution of calcite in water results in a basic solution, with pH around 8.3, that can neutralize the acid produced by the oxidation process. Methods for prevention of acid mine drainage in this and other similar mines are noted.  相似文献   

15.
 Sampling acid mine drainage (AMD) or natural acid rock drainage (ARD)-impacted sediments is complex, requiring appropriate field sampling techniques to ensure representative samples that are both repeatable and reproducible. The important factors affecting sampling of riverine sediments are examined. These include sample site location, field observations, representative sampling, sample collection techniques, and sample preservation. A recommended sampling and processing protocol is presented for AMD- and ARD-impacted riverine sediments, which includes sediment sampling, Fe hydroxide floc sampling, chemical analysis, interstitial (pore) water collection, sediment elutriates, sediment fractionation, and physical analysis. The importance of bioassay testing is discussed, as is quality assurance and assessment approaches to define sediment quality criteria. Received: 18 September 1995 · Accepted: 23 October 1995  相似文献   

16.
普阳煤矿位于一断陷盆地的浅部新近系地层中,矿区被3种类型的水文地质边界圈闭。煤层分布标高低于暗河出口100~230 m,煤田四周及盆地基底均为岩溶含水层,其承压水头高于煤层底板67~268 m,预计最低开采标高的平均承压水头约206 m。为解决矿区地下水突水威胁,监测普阳河水流入和流出的水量,根据水均衡原理及矿坑充水要素,制定中长期排水方案。研究结果表明,矿区岩溶发育垂向分带特征清楚,煤层底板以下岩溶含水层以弱岩溶带为主,单元内93%的地下水通过普阳暗河集中排泄,加之煤层以下有一定厚度的隔水层阻隔,故深层开采时可能发生局部突水危害,但水量不大,最大涌水量仅限于自然状态下补给普阳河的地下水径流量。结合矿坑充水控制因素及地下水动力学分析,采用水均衡法评价突水量,方便可行。   相似文献   

17.
针对煤层顶板承压含水层涌水模式不清的问题,从煤层回采过程中顶板含水层涌水的时空变化特征入手,提出顶板含水层涌水量由静态储存量和动态补给量构成,认为静态储存量主要受来压步距、顶板垮落和导水裂隙(合称冒裂)影响区含水层厚度、含水层给水度控制,动态补给量主要受冒裂影响区外围含水层厚度、渗透性流场中水力梯度和过水断面面积控制;根据导水裂隙波及含水层情况,将顶板含水层涌水模式划分为井底进水的触及井涌水、井壁及井底进水的非完整井涌水和井壁进水的完整井涌水3种模式,并基于地下水渗流理论给出不同涌水模式下动态补给水量计算公式;针对以往疏放水钻孔数量多及疏放水量大的问题,以实现工作面顶板含水层静态储存量疏放后动态补给量可控为目的,提出冒裂区高度控制钻孔深度、单孔水位影响半径控制钻孔布置间距、钻孔疏放水量稳定时间控制超前疏放时间的疏放水钻孔优化设计理念,对疏放水及疏放钻孔布置进行优化,形成系统的顶板含水层水疏放体系。研究结果丰富了煤层顶板含水层涌水量计算和控制方法,对顶板水害防控具有实际的指导意义。   相似文献   

18.
Osheepcheon Creek running through the Dogyae area is being polluted by the influx of the abandoned coal mine drainage. Generally, the more polluted water has lower pH and Eh and higher conductivity values. The concentrations of Mg, Ca, Fe, SO4, and some trace elements, such as Cd, Co, Cr, Mo, Ni, Pb, Rb, Sr, U and Zn, are tens to hundreds of times more concentrated in the abandoned coal mine drainage than in the unpolluted streamwater. However, most immobile toxic pollutants from the mine drainage are quickly removed from the streamwater by the precipitation of amorphous Fe hydroxide and sorption on the precipitated Fe hydroxide. The fast removal of the pollutants from the streamwater maintains the water quality of the creek as acceptable at most places along the stream path, except where the abandoned coal mine drainage flows in. However, the creek has the potential of deteriorating quickly if the mine drainage is allowed to be continuously combined with the streams. A function of pH, Eh, and conductivity has been developed with discriminant function analysis for the purpose of easy, fast, and inexpensive measurement of the degrees of pollution of the streams. The estimated pollution of the streams with the discriminant function are consistent with what the chemical compositions of the water samples indicate. The pollution map of the study area was constructed from the calculated scores with the discriminant function. The pollution map suggests that the pollutants mainly come from the west side of Osheepcheon Creek. Thus, the abandoned coal mine drainage from the west side has to be appropriately treated as soon as possible to prevent Osheepcheon Creek from being further polluted. Considering the topography, climate, and the amount of the mine drainage, an active treatment method is recommended.  相似文献   

19.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   

20.
 Annually, an amount of approximately 13 million cubic meters of hard-coal tailings must be disposed of in the German Ruhr Valley. Besides the waste of land in a densily populated region, the disposal of the pyrite-bearing material under atmospheric conditions may lead to the formation of acid mine drainage (AMD). Therefore, alternative disposal opportunities are of increasing importance, one of which being the use of tailings under water-saturated conditions, such as in backfilling of abandoned gravel pits or in the construction of waterways. In this case, the oxidation of pyrite, and hence the formation of AMD, is controlled by the amount of oxygen dissolved in the pore water of tailings deposited under water. In case the advective percolation of water is suppressed by sufficient compaction of the tailings, oxygen transport can be reduced to diffusive processes, which are limited by the diffusive flux of dissolved oxygen in equilibrium with the atmospheric pO2. Calculations of the duration of pyrite oxidation based on laboratory experiments have shown that the reduction of oxygen is mainly controlled by the content of organic substance rather than the pyrite content, a fact that is supported by results from oxidation experiments with nitrate. A "worst case" study has lead to the result that the complete oxidation of a 1.5-m layer of hard-coal tailings deposited under water-saturated conditions would take as much as several hundred thousand years. Received: 6 May 1996 · Accepted: 2 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号