首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Numerical simulation in recent years has revealed that the cold lithosphere, whose viscosity is three to four orders of magnitude higher than that of the underlying mantle, behaves during mantle convection as a stagnant lid. On the basis of model calculations, this paper shows how convection changes over to this regime with increasing viscosity. Spatially fixed high viscosity inclusions and those moving with the convective flow have fundamentally different effects on the structure of convective flows. The model calculations indicate that anomalously low viscosity asthenospheric regions also lead to a specific regime of convection. With a decrease in the viscosity by more than three orders of magnitude, a further reduction in the viscosity of the region ceases to influence the structure of convection in the outer region. The boundary with this region behaves as a freely permeable boundary. In the low viscosity asthenospheric region itself, autonomous convection can arise under certain conditions.  相似文献   

2.
A one-dimensional model of flow between a fixed boundary at the bottom and a moving one on top with no net flow through vertical sections is tested for geophysically interesting mantle viscosity-depth functions. Such a model, although simplistic, may help in answering the question to what depth the return flow extends, at least in the case of moving plates measuring many thousand kilometers across, such as the Pacific plate.It the viscosity in the asthenosphere is less than three orders of magnitude smaller than that of the mantle below, the return flow extends to great depth and the asthenosphere is a zone of concentrated shear. If the viscosity contrast is greater, the return flow is concentrated in the asthenosphere. For a wide range of model parameters typical flow velocities below the asthenosphere are about one-tenth of the plate velocity. The pressure gradient required by the mantle flow may be manifest in gravity trends across moving plates, but no excessive gravity anomalies are required by the model if the absolute viscosity values conform to those inferred from post-glacial rebound data. A thinner and lower-viscosity layer is favored over a thicker and more viscous layer if both fit glacial rebound evidence. The present model may not be applicable if down to the core the viscosity is as low as about 1021 N s m–2 with a free-slip bottom boundary.  相似文献   

3.
Some consequences arising from the superposition of flows of two different kinds or scales in a non-Newtonian mantle are discussed and applied to the cases mantle convection plus postglacial rebound flow as well as small- plus large-scale mantle convection. If the two flow types have similar magnitude, the apparent rheology of both flows becomes anisotropic and the apparent viscosity for one flow depends on the geometry of the other. If one flow has a magnitude significantly larger than the other, the apparent viscosity for the weak flow is linear but develops direction-dependent variations about a factorn (n being the power exponent of the rheology). For the rebound flow lateral variations of the apparent viscosity about at least 3 are predicted and changes in the flow geometry and relaxation time are possible. On the other hand, rebound flow may weaken the apparent viscosity for convection. Secondary convection under moving plates may be influenced by the apparent anisotropic rheology. Other mechanisms leading to viscous anisotropy during shearing may increase this effect. A linear stability analysis for the onset of convection with anisotropic linear rheology shows that the critical Rayleigh number decreases and the aspect ratio of the movement cells increases for decreasing horizontal shear viscosity (normal viscosity held constant). Applied to the mantle, this model weakens the preference of convection rolls along the direction of plate motion. Under slowly moving plates, rolls perpendicular to the plate motion seem to have a slight preference. These results could be useful for resolving the question of Newtonian versus non-Newtonian or isotropic versus anisotropic mantle rheology.  相似文献   

4.
建立三维球壳模型,将地壳和地幔作为不可压缩牛顿粘性流体处理,考虑了大陆、大洋、洋脊及俯冲带的不同物性参数,利用有限元法求解流体运动的基本方程组,研究地幔流动、板块运动与大地构造之间的关系。计算表明,速度边界条件、粘度分布等是影响地幔流动形式的主要因素。若地表径向取应力边界条件,且径向速度自由,则没有封闭的对流环存在。计算得到的地表径向速度分布与全球的构造分区具有显著的对应关系:在岛弧区、造山区速度向上运动,在大洋区、边缘海及裂谷区速度向下运动。  相似文献   

5.
南海东北部及其邻近地区的Pn波速度结构与各向异性   总被引:19,自引:12,他引:7       下载免费PDF全文
利用中国地震台网和ISC台站1980~2004年的地震数据,反演了南海东北部及其邻近地区的Pn波速度结构和各向异性.上地幔顶部的速度变化揭示出区域地质构造的深部特征:华南地区速度较高并且变化平缓,具有构造稳定地区的岩石层地幔特征;华南沿海尤其是滨海断裂带附近出现低速异常,表明该断裂可能穿过壳幔边界深达上地幔顶部.南海北部至台湾海峡较高的速度与华南地区类似,反映出大陆边缘和陆架地区的岩石层地幔性质;西沙海槽附近较高的速度不仅反映了华南大陆向南的延伸,而且与海槽裂谷拉张引起的地幔上拱有关,整个南海北部没有发现大规模地幔热流的活动痕迹.相比之下,南海东部次海盆的上地幔顶部存在明显的低速异常,对应于海底扩张中心的地幔上涌区,表明岩石层地幔强烈减薄甚至缺失;台湾东部-吕宋-菲律宾北部的低速异常与地震、火山活动以及岩浆作用紧密相关,揭示了西太平洋岛弧俯冲带的活动特征;南海东北部的洋-陆边界清晰,南海东部和菲律宾海西部较高的速度代表了海洋岩石层地幔的性质.Pn波各向异性反映出区域性构造应力状态及岩石层地幔的变形痕迹:华南地区的各向异性较小,说明这一构造稳定地区的岩石层地幔变形程度较弱;南海北部的快波方向与地壳浅表层构造的伸展方向一致,主要反映了中、新生代以来的大陆边缘张裂和剪切作用对岩石层地幔结构的影响;琉球-台湾-吕宋岛弧两侧各向异性十分强烈,平行于海沟的快波方向表明菲律宾海板块和欧亚大陆的相互作用导致俯冲板块前缘的岩石层地幔强烈变形;台湾东南海域快波方向的变化可能与欧亚大陆和菲律宾海板块俯冲机制的转换以及岩石层被撕裂有关.  相似文献   

6.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

7.
Heat and mass transfer processes in the conduit of a thermochemical plume located beneath an oceanic plate far from a mid-ocean ridge (MOR) proceed under conditions of horizontal convective flows penetrating the plume conduit. In the region of a mantle flow approaching the plume conduit (in the frontal part of the conduit), the mantle material heats and melts. The melt moves through the plume conduit at the average velocity of flow v and is crystallized on the opposite side of the conduit (in the frontal part of the conduit). The heat and the chemical dope transferred by the conduit to the mantle flow are carried away by crystallized mantle material at the velocity v.The local coefficients of heat transfer at the boundary of the plume conduit are theoretically determined and the balance of heat fluxes through the side of the plume conduit per linear meter of the conduit height. The total heat generation rate, transmitted by the Hawaiian plume into the upper and lower mantle, is evaluated. With the use of regular patterns of heat transfer in the lower mantle, which is modeled on the horizontal layer, heated from below and cooled from above, the diameter of the plume source, the kinematic viscosity of the melt in the plume conduit, and the velocity of horizontal lower-mantle flows are evaluated and the dependences of the temperature drop, viscosity and Rayleigh number for the lower mantle on the diameter of the plume source are presented.  相似文献   

8.
A new approach to analytical and numerical study of the process of the post-glacial uplifting of the Earth’s surface was proposed within the framework of a viscous model. Displacement of the Earth’s surface is considered as the motion of the density boundary due to chemico-density convection. It is shown that the incorporation of the non-Newtonian rheology at observed velocities of post-glacial uplifts requires an obligatory presence of faults in the lithosphere and gives rise to quasi-uniform motion of the mantle material, whose viscosity under the lithosphere is, on the average, sufficiently small and amounts to ~1019 Pa. The study of the stability of the constructed model of the post-glacial uplift considered as the chemico-density convection relative to the thermal convection shows that the velocity of thermal convection developing in the presence of a quasiuniform mantle flow related to the post-glacial recovery is ~1 m/yr.  相似文献   

9.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

10.
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau,the Ordos block and the Sichuan basin.The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China.Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s.Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 km.The phase velocities at short periods (20 s) are lower in the Sichuan basin,the northwest segment of the Ordos block and the Weihe graben,and outline sedimentary deposits.At intermediate and long periods (25 s),strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau,reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east.Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau,the Sichuan basin and the Ordos block.The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle.There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau,whose width narrows towards the eastern margin of the plateau.No low velocity zone is apparent beneath the Qinling orogen,suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle.  相似文献   

11.
Iceland is the type example of a ridge-centered hotspot. It is controversial whether the seismic anomaly beneath it originates in the lower mantle or the upper mantle. Some recent studies reported that the 660-km discontinuity beneath central Iceland is shallow relative to peripheral regions and this was interpreted as an effect of elevated temperature at that depth. We investigate topography of the major upper mantle discontinuities by separating the effects of the topography and volumetric velocity heterogeneity in P receiver functions from 55 seismograph stations. Our analysis demonstrates that a significant (at least 10-km) shallowing of the 660-km discontinuity is only possible in the case of improbably low seismic velocities in the mantle transition zone beneath central Iceland. If, as in previous studies, lateral velocity variations in the mantle transition zone are neglected, the data require a depressed rather than an uplifted 660-km discontinuity. For a reasonable S-wave velocity anomaly in the mantle transition zone (around − 3%) no topography on the 660-km discontinuity is required. This can be explained by the lack of temperature anomaly or an effect of two phase transitions with opposite Clapeyron slopes.  相似文献   

12.
Assuming a radially stratified Newtonian mantle in a steady-state approximation, we demonstrate that the permeability of a viscosity interface at 660-km depth strongly depends on the wavelength of buoyancy forces driving the flow. The flow induced by long-wavelength loads penetrates through the boundary freely even if the viscosity increases by two orders. In contrast, the boundary is practically impermeable for short-wavelength loads located in the upper mantle. Thus, a stepwise increase of viscosity is a significant obstacle for small descending features in the upper mantle, but huge upper mantle downwellings, or upwellings formed in the-lower mantle can overcome it easily. This indicates that certain care is necessary in interpreting the seismic structure of the mantle by means of flow models. The global tomographic image includes only the first few degrees of the harmonic series and, consequently, its interpretation in terms of a present-day flow field results in a predominantly whole-mantle circulation even for extreme viscosity contrasts.  相似文献   

13.
中天山地区的Pn波速度结构与各向异性   总被引:4,自引:1,他引:3       下载免费PDF全文
利用宽频带流动地震台阵GHENGIS和吉尔吉斯地震台网KNET记录的地震波走时数据,反演了中天山地区的Pn波速度结构和各向异性.结果表明,中天山上地幔顶部平均速度偏低,具有构造活动地区的特点和明显的横向非均匀性;中天山南部地幔上涌区的Pn波速度非常低,表明存在较高的热流活动.Pn波速度的变化与地震分布有着密切的对应关系:地震大都发生在中天山北部Pn波高速区上方,而南部的Pn波低速区上方几乎没有地震.这一现象说明地幔上涌引起高温极大地降低了岩石层地幔的强度,并以热传导的方式进入地壳使其失去地震破裂强度而发生韧性变形.中天山北部和南部的各向异性也存在一定的差异,南部各向异性的快波方向为近南北方向,与SKS波的各向异性特征基本一致,反映了地幔物质的迁移方向;北部各向异性的快波方向呈向南凸出的旋转趋势,估计与哈萨克地台南缘楚河盆地地壳块体向天山挤入造成应力场的改变和岩石层变形有关.  相似文献   

14.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

15.
In order to study the relationship between mantle flow and global tectogenesis, we present a 3-D spherical shell model with incompressible Newtonian fluid medium to simulate mantle flow which fits the global tectogenesis quite well. The governing equations are derived in spherical coordinates. Both the thermal buoyancy force and the self-gravitation are taken into account. The velocity and pressure coupled with temperature are computed, using the finite-element method with a punitive factor. The results show that the lithosphere, as the boundary layer of the earth's thermodynamic system, moves with the entire mantle. Both its horizontal and vertical movements are the results of the earth's thermal motion. The orogenesis occurs not only in the collision zones at the plates' boundaries, but also occurs within the plates. If the core-mantle boundary is impermeable and the viscosity of the lower mantle is considerable, the vertical movement is mostly confined to the upper mantle. The directions of the asthenospheric movements are not fully consistent with those of the lithospheric movements. The depths of spreading movements beneath all ridges are less than 220 km. In some regions, the shear stresses, acting on the base of the lithosphere by the asthenosphere, are the main driving force; but in other regions, the shear stresses are the resisting force.  相似文献   

16.
It is widely recognized that lavas behave as Bingham liquids, which are characterized by a yield stress σ and a plastic viscosity η. We consider two models describing downslope flows of a Bingham liquid with different aspect ratios A (= flow height/flow width): model 1 with A 1 and model 2 with A ≈ 1. Sufficiently uphill with respect to the front, such flows can be considered as laminar and locally isothermal. For both models, we obtain analytically the steady-state solution of the Navier-Stokes equations and the constitutive equation for a Bingham liquid. We study the flow height and velocity as functions of flow rate, rheological parameters and ground slope. It is found that such flows remain in the Newtonian regime at low yield stresses (σ 103dyne/cm2), but the transition to the Bingham regime also depends on flow rate and occurs at higher values of σ for higher flow rates: for instance, a high aspect ratio flow (model 2) is still very close to the Newtonian regime at σ = 104 dyne/cm2, if the flow rate is greater than 105 g/s. In the Bingham regime, flow heights are generally greater and flow velocities are smaller than in the Newtonian regime; moreover, flow heights are independent of flow rate, so that a change in flow rate results exclusively in a velocity change. After assuming a specific temperature dependence of σ and η between the solidus and the liquidus temperatures of an ideal Bingham liquid (1000°C and 1200 °C respectively), flow heights and velocities are examined as functions of temperature along the flow. Several effects observed in lava flows are predicted by these models and allow a more quantitative insight into the behaviour of lava flows.  相似文献   

17.
Edge-driven convection   总被引:23,自引:0,他引:23  
We consider a series of simple calculations with a step-function change in thickness of the lithosphere and imposed, far-field boundary conditions to illustrate the influence of the lithosphere on mantle flow. We consider the effect of aspect ratio and far-field boundary conditions on the small-scale flow driven by a discontinuity in the thickness of the lithosphere. In an isothermal mantle, with no other outside influences, the basic small-scale flow aligns with the lithosphere such that there is a downwelling at the lithospheric discontinuity (edge-driven flow); however, the pattern of the small-scale flow is strongly dependent on the large-scale thermal structure of a much broader area of the upper mantle. Long-wavelength temperature anomalies in the upper mantle can overwhelm edge-driven flow on a short timescale; however, convective motions work to homogenize these anomalies on the order of 100 million years while cratonic roots can remain stable for longer time periods. A systematic study of the effect of the boundary conditions and aspect ratio of the domain shows that small-scale, and large-scale flows are driven by the lithosphere. Edge-driven flow produces velocities on the order of 20 mm/yr. This is comparable to calculations by others and we can expect an increase in this rate as the mantle viscosity is decreased.  相似文献   

18.
The dynamics of plate tectonics are strongly related to those of subduction. To obtain a better understanding of the driving forces of subduction, we compare relations between Cenozoic subduction motions at major trenches with the trends expected for the simplest form of subduction. i.e., free subduction, driven solely by the buoyancy of the downgoing plate. In models with an Earth-like plate stiffness (corresponding to a plate–mantle viscosity contrast of 2–3 orders of magnitude), free plates subduct by a combination of downgoing plate motion and trench retreat, while the slab is draped and folded on top of the upper-lower mantle viscosity transition. In these models, the slabs sink according to their Stokes’ velocities. Observed downgoing-plate motion–plate-age trends are compatible with >80% of the Cenozoic slabs sinking according to their upper-mantle Stokes’ velocity, i.e., subducting-plate motion is largely driven by upper-mantle slab pull. Only in a few cases, do young plates move at velocities that require a higher driving force (possibly supplied by lower-mantle–slab induced flow). About 80% of the Cenozoic trenches retreat, with retreat accounting for about 10% of the total convergence. The few advancing trench sections are likely affected by regional factors. The low trench motions are likely encouraged by low asthenospheric drag (equivalent to that for effective asthenospheric viscosity 2–3 orders below the upper-mantle average), and low lithospheric strength (effective bending viscosity ~2 orders of magnitude above the upper-mantle average). Total Cenozoic trench motions are often very oblique to the direction of downgoing-plate motion (mean angle of 73°). This indicates that other forces than slab buoyancy exert the main control on upper-plate/trench motion. However, the component of trench retreat in the direction of downgoing plate motion (≈ slab pull) correlates with downgoing-plate motion, and this component of retreat generally does not exceed the amount expected for free buoyancy-driven subduction. High present-day slab dips (on average about 70°) are compatible with largely upper-mantle slab-pull driven subduction of relatively weak plates, where motion partitioning and slab geometry adjust to external constraints/forces on trench motion.  相似文献   

19.
New, unique information on the inertial and dissipative coupling of the liquid core and the mantle has been retrieved from modern high-precision (radiointerferometer and GPS) data on tidal variations in the rotation velocity and nutation of the Earth. Comparison of theoretical and observed data provided new estimates for the dynamic flattening of the outer liquid and the inner solid cores, mantle quality factor, viscosity of the liquid core, and electromagnetic coupling of the liquid core and the mantle [Molodensky, 2004, 2006]. As was shown in the first part of the paper [Molodensky, 2008] (further referred to as [I]), generation of eddy flows in Proudman-Taylor columns, whose orientation is controlled by the topography of the liquid core-mantle boundary, should be taken into account for correct estimation of the inertial coupling (see formulas (8) and (34) in [I]). The range of periods within which this effect plays a significant role is determined by the decay time of these flows. This time is estimated in the paper for the case where dissipation is related to viscous friction at the core-mantle boundary or with the electromagnetic coupling of the liquid core and the mantle. Because of significant uncertainties in modern data on the viscosity of the liquid core, the magnetic field intensity at the core-mantle boundary, and the electrical conductivity of the lower mantle, the dissipative coupling of the liquid core and the mantle cannot be calculated as yet. However, as shown in the paper, the decay time of eddy flows is connected with the attenuation time of subdiurnal free nutation and with the liquid core viscosity. This enables the estimation of the frequency dependence of the dissipative coupling in a fairly wide range. It is shown that the range of periods for which relations (8) and (34) in [I] are valid encompasses the best-studied length-of-day variations and, therefore, these relations are applicable to analysis of the majority of modern data.  相似文献   

20.
地幔对流的实验研究:非立柱状幔柱和地幔涡旋   总被引:7,自引:0,他引:7       下载免费PDF全文
地幔对流的物理模拟实验结果表明 ,在地幔介质和温度非均匀分布的复杂条件下 ,热卷流 (地幔柱 )往往由立柱状转变为非立柱状 (含斜柱状、涡旋状等 )。在忽略科里奥利力的情况下 ,板块的下插和滞积下沉、岩石圈根的存在以及地幔介质粘度的非均匀分布等都可能构成不同形状的障碍 -导流体 ,导致地幔的涡旋运动。软流圈中的水平涡旋环带属于对数螺线型 ,环带旋转半径及线速度逐渐减小 ,最终在旋转中心处下沉 ,而旋转角速度大致保持恒定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号