首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract– We report bulk and olivine compositions in 66 stony cosmic spherules (Na2O < 0.76 wt%), 200–800 μm in size, from the Transantarctic Mountains, Antarctica. In porphyritic cosmic spherules, relict olivines that survived atmospheric entry heating are always Ni‐poor and similar in composition to the olivines in carbonaceous or unequilibrated ordinary chondrites (18 spherules), and equilibrated ordinary chondrites (one spherule). This is consistent with selective survival of high temperature, Mg‐rich olivines during atmospheric entry. Olivines that crystallized from the melts produced during atmospheric entry have NiO contents that increase with increasing NiO in the bulk spherule, and that range from values similar to those observed in chondritic olivines (NiO generally <0.5 wt%) to values characteristic of olivines in meteoritic ablation spheres (NiO > 2 wt%). Thus, NiO content in olivine cannot be used alone to distinguish meteoritic ablation spheres from cosmic spherules, and the volatile element contents have to be considered. We propose that the variation in NiO contents in cosmic spherules and their olivines is the result of variable content of Fe, Ni metal in the precursor. NiO contents in olivines and in cosmic spherules can thus be used to discuss their parent body. Ni‐poor spherules can be derived from C‐rich and/or metal‐poor precursors, either related to CM, CI, CR chondrites or to chondritic fragments dominated by silicates, regardless of the parent body. Ni‐rich spherules (NiO > 0.7 wt%) that represent 55% of the 47 barred‐olivine spherules we studied, were derived from the melting of C‐poor, metal‐rich precursors, compatible with ordinary chondrite or CO, CV, CK carbonaceous chondrite parentages.  相似文献   

2.
Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium–aluminum‐rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S‐type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma‐mass spectrometry. The S‐type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S‐type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca‐Al‐rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.  相似文献   

3.
Abstract— Micrometeorites collected from the bottom of the South Pole water well (SPWW) may represent a complete, well‐preserved sample of the cosmic dust that accreted on Earth from 1100–1500 A.D. We classified 1588 cosmic spherules in the size range 50–800 μm. The collection has 41% barred olivine spherules, 17% glass spheres, 12% cryptocrystalline spherules, 11% porphyritic olivine spherules, 12% relicgrain‐bearing spherules, 3% scoriaceous spherules, 2% I‐type spherules, 1% Ca‐AI‐Ti‐rich (CAT) spherules, and 1% G‐type spherules. We also found bubbly glass spherules, spherules with glass caps, and ones with sulfide coatings—particles that are absent from other collections. A classification sequence of the stony spherules (scoriaceous, relic‐grain‐bearing, porphyritic, barred olivine, cryptocrystalline, glass, and CAT) is consistent with progressive heating and evaporation of Fe from chondritic materials. The modern‐day accretion rate and size distribution measured at the SPWW can account for the stony spherules present in deep‐sea collection through preferential dissolution of glass and small stony spherules. However, weathering alone cannot account for the high accretion rate of I‐type spherules determined for two deep‐sea collections. The SPWW collection provides data to constrain models of atmospheric‐entry heating and to assess the effects of terrestrial weathering.  相似文献   

4.
Extraterrestrial particulate materials on the Earth can originate in the form of collisional debris from the asteroid belt, cometary material, or as meteoroid ablation spherules. Signatures that link them to their parent bodies become obliterated if the frictional heating is severe during atmospheric entry. We investigated 481 micrometeorites isolated from ~300 kg of deep sea sediment, out of which 15 spherules appear to have retained signatures of their provenance, based on their textures, bulk chemical compositions, and relict grain compositions. Seven of these 15 spherules contain chromite grains whose compositions help in distinguishing subgroups within the ordinary chondrite sources. There are seven other spherules which comprise either entirely of dusty olivines or contain dusty olivines as relict grains. Two of these spherules appear to be chondrules from an unequilibrated ordinary chondrite. In addition, a porphyritic olivine pyroxene (POP) chondrule‐like spherule is also recovered. The bulk chemical composition of all the spherules, in combination with trace elements, the chromite composition, and presence of dusty olivines suggest an ordinary chondritic source. These micrometeorites have undergone minimal frictional heating during their passage through the atmosphere and have retained these features. These micrometeorites therefore also imply there is a significant contribution from ordinary chondritic sources to the micrometeorite flux on the Earth.  相似文献   

5.
Abstract— We review the meteoritical and astronomical literature to answer the question: What is the evidence for the importance of ordinary chondritic material to the composition of the asteroid belt? From the meteoritical literature, we find that currently (1) our meteorite collections sample at least 135 different asteroids; (2) out of 25+ chondritic meteorite parent bodies, 3 are (by definition) ordinary chondritic; (3) out of 14 chondritic grouplets and unique chondrites, 11 are affiliated with a carbonaceous group/clan of chondrites; (4) out of 24 differentiated groups of meteorites, only the HE iron meteorites clearly formed from ordinary chondritic precursor material; (5) out of 12 differentiated grouplets and unique differentiated meteorites, 8 seem to have had carbonaceous chondritic precursors; (6) a high frequency of carbonaceous clasts in ordinary chondritic breccias suggests that ordinary chondrites have been embedded in a swarm of carbonaceous material. The rare occurrence (only one example) of ordinary chondritic clasts in carbonaceous chondritic breccias indicates that ordinary chondritic material has not been widespread in the asteroid belt; (7) cosmic spherules, micrometeorites, and stratospheric interplanetary dust particles—believed to represent a less biased sampling of asteroidal material—show that only a very small fraction (less than ~1%) of asteroidal dust has an ordinary chondritic composition. From the astronomical literature, we find that currently (8) spectroscopic surveys of the main asteroid belt are finding more and more nonordinary chondritic primitive material in the inner main belt; (9) the increase in spectroscopic data has increased the inferred mineralogical diversity of main belt asteroids; and (10) no ordinary chondritic asteroids have been directly observed in the main belt. These lines of evidence strongly suggest a scenario in which ordinary chondritic asteroids were never abundant in the main belt. The S-type asteroids may currently be primarily differentiated, but the precursor material is more likely to have been carbonaceous chondritic, not ordinary chondritic. Historically, carbonaceous material could have dominated the entire main belt. This could explain the presence in the inner main belt of asteroids linked to the primitive carbonaceous chondrites, and the absence of asteroids linked to the ordinary chondrites. The implications of this scenario for the asteroid heating mechanism(s) are briefly discussed.  相似文献   

6.
Abstract— Glacial deposits at the margins of the ice cap of the northern island of the Novaya Zemlya archipelago, Russia, contain numerous spherules and rare scoriaceous particles thought to be extraterrestrial. The 1 Kyr old glacier has decreased in volume and coverage during the last 40 years, leaving the spherules contained in the ice at the margins of the glacier where they can be easily collected. The spherules are similar in their appearance, texture, and mineralogy to cosmic spherules found in deep‐sea sediments in Greenland and Antarctica. Silicate spherules have typical bar‐like textures (75%) or porphyritic textures (15%), while other spherules are glassy (7%). The spherules from Novaya Zemlya are altered only slightly. There are spherules consisting of iron oxides, metal cores with iron oxide rims, a continuous network of iron oxide dendrites in a glass matrix, and particles rich in chromite (3%). Some spherules contain metal droplets and relict forsterite and low‐Ca pyroxene. Silicate spherule compositions match compositions of other cosmic spherules. Both Nova Zemlya and other cosmic spherules are close to carbonaceous chondrite matrices in patterns of variations for Ca, Mg, Si, and Al, which might suggest that their predecessor was similar to carbonaceous chondrite matrices. Unmelted micrometeorites are generally depleted in Ca and Mg and enriched in Al relative to cosmic spherules. The depletion of the micrometeorites in Ca and Mg can be connected with their terrestrial alteration (Kurat et al. 1994), while the Al enrichment seems to be primary.  相似文献   

7.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

8.
Fe‐Ni metal is a common constituent of most meteorites and is an indicator of the thermal history of the respective meteorites, it is a diagnostic tool to distinguish between groups/subgroups of meteorites. In spite of over a million micrometeorites collected from various domains, reports of pure metallic particles among micrometeorites have been extremely rare. We report here the finding of a variety of cosmic metal particles such as kamacite, plessite, taenite, and Fe‐Ni beads from deep‐sea sediments of the Indian Ocean, a majority of which have entered the Earth unaffected by frictional heating during atmospheric entry. Such particles are known as components of meteorites but have never been found as individual entities. Their compositions suggest precursors from a variety of meteorite groups, thus providing an insight into the metal fluxes on the Earth. Some particles have undergone heating and oxidation to different levels during entry developing features similar to I‐type cosmic spherules, suggesting atmospheric processing of individual kamacites/taenite grains as another hitherto unknown source for the I‐type spherules. The particles have undergone postdepositional aqueous alteration transforming finally into the serpentine mineral cronstedtite. Aqueous alteration products of kamacite reflect the local microenvironment, therefore they have the potential to provide information on the composition of water in the solar nebula, on the parent bodies or on surfaces of planetary bodies. Our observations suggest it would take sustained burial in water for tens of thousands of years under cold conditions for kamacites to alter to cronstedtite.  相似文献   

9.
Abstract— Five hundred stony cosmic spherules collected from deep-sea sediments, polar ice, and the stratosphere have been analyzed for major and some minor element composition. Typical spherules are products of atmospheric melting of millimeter sized and smaller meteoroids. The samples are small and modified by atmospheric entry, but they are an important source of information on the composition of asteroids. The spherules in this study were all analyzed in an identical manner, and they provide a sampling of the solar system's asteroids that is both different and less biased than provided by studies of conventional meteorites. Volatile elements such as Na and S are depleted due to atmospheric heating, while siderophiles are depleted by less understood causes. The refractory nonsiderophile elements appear not to have been significantly disturbed during atmospheric melting and provide important clues on the elemental composition of millimeter sized meteoroids colliding with the Earth. Typical spherules have CM-like composition that is distinctively different than ordinary chondrites and most other meteorite types. We assume that C-type asteroids are the primary origin of spherules with this composition. Type S asteroids should also be an important source of the spherules, and the analysis data provide constraints on their composition. A minor fraction of the spherules are melt products of precursor particles that did not have chondritic elemental compositions. The most common of these are particles that are dominated by olivine. The observed compositions of spherules are inconsistent with the possibility that an appreciable fraction of the spherules are simply chondrules remelted during atmospheric entry.  相似文献   

10.
Abstract— Over 100 000 large interplanetary dust particles in the 50–500 μm size range have been recovered in clean conditions from ~600 tons of Antarctic melt ice water as both unmelted and partially melted/dehydrated micrometeorites and cosmic spherules. Flux measurements in both the Greenland and Antarctica ice sheets indicate that the micrometeorites deliver to the Earth's surface ~2000× more extraterrestrial material than brought by meteorites. Mineralogical and chemical studies of Antarctic micrometeorites indicate that they are only related to the relatively rare CM and CR carbonaceous chondrite groups, being mostly chondritic carbonaceous objects composed of highly unequilibrated assemblages of anhydrous and hydrous minerals. However, there are also marked differences between these two families of solar system objects, including higher C/O ratios and a very marked depletion of chondrules in micrometeorite matter; hence, they are “chondrites-without-chondrules.” Thus, the parent meteoroids of micrometeorites represent a dominant and new population of solar system objects, probably formed in the outer solar system and delivered to the inner solar system by the most appropriate vehicles, comets. One of the major purposes of this paper is to discuss applications of micrometeorite studies that have been previously presented to exobiologists but deal with the synthesis of prebiotic molecules on the early Earth, and more recently, with the early history of the solar system.  相似文献   

11.
Abstract– On the basis of morphological and petrographic characteristics, eight “giant” unmelted micrometeorites in the 300–1100 μm size range were selected from the Transantarctic Mountain micrometeorite collection, Victoria Land, Antarctica. Mineralogical and geochemical data obtained by means of scanning electron microscopy, electron probe microanalyses, and synchrotron X‐ray diffraction allow their classification as chondritic micrometeorites. The large size of the micrometeorites increases considerably the amount of mineralogical and geochemical information compared to micrometeorites in smaller size fractions, therefore allowing a better definition of their parent material. A large variety of material is observed: five micrometeorites are related to unequilibrated and equilibrated ordinary chondrite, one to CV chondrite, one to CM chondrite, and one to CI chondrite parent materials. Besides reporting the first occurrence of a CV‐like micrometeorite, our study shows that the abundance of chondritic material supports observations from recent studies on cosmic spherules that a large part of the micrometeorite flux in this size range is of asteroidal origin.  相似文献   

12.
Abstract— Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe‐Ni‐S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X‐ray intensity maps show that the particles were made of Mg‐rich silicates (typically 200 nm in diameter) cemented by a fine‐grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic‐porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.  相似文献   

13.
Abstract— We report the discovery of four large (>50 μm) cosmic spherules (CSs) and a single scoriaceous micrometeorite (SMM) that contain evidence for the separation of immiscible Fe-Ni-S liquids during atmospheric entry heating. The particles contain segregated Fe-rich regions dominated by either Ni-S-bearing Fe-oxides or iron sulphides and have textural relations that suggest these separated from the silicate portions of the particles as metallic liquids. The oxides, which may be hydrous, are thought to result from alteration of metal and sulphide. The compositions of the silicate portions of the CSs are equivalent to spherules without Fe-rich regions, implying that metallic liquids are exsolved during the heating of most spherules, but completely separate. The single SMM has a very different composition from other scoriaceous particles, and the occurrence of an exsolved metallic liquid probably indicates extreme reduction during entry heating. The pyrolysis of carbonaceous materials is the most likely explanation for reduction and suggests that the precursor material of this particle was unusually C-rich. This SMM might be, therefore, an appropriate candidate for a large melted anhydrous or smectite interplanetary dust particle (IDP). The exsolution of immiscible Fe-Ni-S liquids during entry heating will result in systematic changes in the compositions of the remaining silicate melt.  相似文献   

14.
Abstract— Fusion crusts develop on all meteorites during their passage through the atmosphere but have been little studied. We have characterized the textures and compositions of the fusion crusts of 73 stony meteorites to identify the nature of meteorite ablation spheres (MAS) and constrain the processes operating during the entry heating. Most chondrite fusion crusts are porphyritic and are dominated by olivine, glass, and accessory magnetite; whereas those of the achondrites are mainly glassy. Chondrite fusion crusts contain sulphide droplets with high-Ni contents (>55 wt%). The partially melted substrate of ordinary chondrites (underlying the outer melted crusts) are dominated by silicate glass and composite metal, sulphide, and Cr-bearing Fe-oxide droplets that form as coexisting immiscible liquids. Enstatite chondrite substrates contain Cr- and Mn- bearing sulphides. The substrates of the carbonaceous chondrites comprise a sulphide-enriched layer of matrix. The compositions of melted crusts are similar to those of the bulk meteorite. However, differences from whole rock suggest that three main processes control their chemical evolution: (1) the loss and reaction of immiscible Fe-rich liquids, (2) mixing between substrate partial melts and bulk melts of the melted crust, and (3) the loss of volatile components by evaporation and degassing. Data from fusion crusts suggest that MAS produced at low altitude have compositions within the range of those of silicate-dominated cosmic spherules that are formed by the melting dust particles. Meteorite ablation spheres produced at high altitude probably have compositions very different from bulk meteorite and will resemble cosmic spherules derived from coarse-grained precursors.  相似文献   

15.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

16.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

17.
Abstract– We examined 378 micrometeorites collected from deep‐sea sediments of the Indian Ocean of which 175, 180, and 23 are I‐type, S‐type, and G‐type, respectively. Of the 175 I‐type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)‐sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium‐platinum group element or IPGE) and sub‐μm (or nanometer)‐sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm‐sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer‐sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I‐type micrometeorites. However, the μm‐sized nuggets are seen in fewer specimens (~2.5% of the observed I‐type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer‐sized nuggets from 13 I‐type spherules for platinum group elements. Chemically, the μm‐sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer‐sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm‐sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several implications: (1) The observation of fractionated PGE in an Fe‐Ni system gives rise to the possibility that Earth’s core could contain fractionated PGE. (2) The present data support the processes suggested for the fractionated PGE patterns observed in the ejecta of ancient meteorite impacts. (3) Meteoric metals released in the troposphere could contain fractionated PGNs in large numbers.  相似文献   

18.
Abstract— The D/H ratios and water contents were measured by ion microprobe analysis in 52 individual Antarctic micrometeorites (AMMs) and 10 Antarctic cosmic spherules (ACSs) containing nuggets of iron hydroxide (COPS phase). In AMMs, δD values vary from ?366 to +249%‰ and water contents lie between 0.4-3.7 wt%. The COPS nuggets in cosmic spherules have high water contents (2 to 8 wt%) and exhibit δD values from ?144 to +167%‰, which is indicative of an extraterrestrial origin of their constituent water. The silicate portion of ACSs also contain extraterrestrial H equivalent to ~0.l to 1.2 wt% water. Deuterium-exchange experiments were performed with isotopically spiked water. These experiments demonstrate that water in mineral phases of AMMs and ACSs is indigenous and does not result from contamination during residence in Antarctic ice. The frequency distribution of D/H ratios in AMMs allows us to further narrow the relationship between AMMs and carbonaceous chondrites to CM and CI chondrites but contrasts with that of stratospheric interplanetary dust particles (IDPs) of similar sizes (from ?10 to 50 μm). The relatively narrow range of D/H ratios measured in AMMs as well as in ACSs (which are more resistant and thus less susceptible to collection biases) suggests that D-rich IDP-like particles are very rare in our AMMs collections. This indicates that these D-rich grains might constitute a minor fraction of the micrometeorite flux in the interplanetary medium and that possible collection biases in Antarctica would not be responsible for their strong depletion in the AMMs collections.  相似文献   

19.
Micrometeorites and Their Implications for Meteors   总被引:1,自引:0,他引:1  
Micrometeorites (MMs) are extraterrestrial dust particles, in the size range 25–400 μm, recovered from the Earth’s surface. They have experienced a wide range of heating during atmospheric entry from completely molten spherules to particles heated to temperatures <300°C that have retained low temperature minerals. The majority of MMs have mineralogies, textures and compositions that strongly resemble components from chondritic meteorites suggesting these correspond to sporadic, low geocentric velocity meteors. Changes in MMs due to entry heating, however, have implications for meteoric processes in general that may allow the observed behaviour of meteors to be directly related to the material properties of their meteoroids.  相似文献   

20.
Abstract— Chemical compositions determined using electron excited x-rays are reported for four interplanetary dust particles collected in the stratosphere. These analyses include measurements of carbon and oxygen abundances which are important elements in these primitive materials. Spot analyses show very heterogeneous compositions on a micrometer scale although average composition approaches that of C1 carbonaceous chondrites. While the spot analyses show intermediate compositions between cometary dust and carbonaceous chondrites, the heterogeneity more closely resembles that of comet Halley dust particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号