首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文应用1953~1984年的北极海冰资料,分析各区海冰的季节变化、年际变化、自相关特性及互相关特性。认为Ⅰ区海冰占有最大权重,又具有较大的方差,在全区海冰中起着重耍作用。冬季,各区海冰相互关联,其余季节,基本上相互独立。各区海冰均提供了气候“贮存”机制,一个季节的冰能影响下一个季节冰的特性;冬季的贮存能力大于夏季,春秋次之;Ⅱ区和Ⅳ区冰的持续性优于Ⅰ区 。  相似文献   

2.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

3.
北极海冰对全球气候起着非常重要的调制作用,海冰范围是海冰监测的基本参数。近40年,北极地区持续变暖,北极海冰显著减少,进而引发北极自然环境恶化、北半球极端天气频发、全球海平面上升等一系列环境和气候问题。准确获取北极海冰范围及其演变趋势,确定海冰变化对全球气候系统的响应,是研究和预测全球气候变化趋势的关键之一。HasISST和OISST海冰数据集在海冰监测中应用最为广泛,可为北极地区长时间序列海冰变化研究提供基础数据,但这2套数据集空间分辨率相对较低,应用于北极关键区对中国气候响应研究方面存在很大的局限,为解决这一问题和弥补国内海冰监测微波遥感数据的空白,2011年6月27日,国家卫星气象中心(National Satellite Meteorological Center, NSMC)发布了FY(Fengyun, FY)北极海冰数据集,该数据集利用搭载在FY卫星上的微波成像仪(Microwave Radiation Imager, MWRI)数据,使用Enhance NASA Team算法制作,该算法利用前向辐射传输模型模拟北极地区4种海表类型(海水、新生冰、一年冰和多年冰)在不同大气条件下MWRI辐射亮温,进而得到每种大气条件下0~100%的海冰覆盖度查找表(海冰覆盖度每次增加1%),通过观测值与模拟值的比对得到海冰覆盖度,由该数据集计算得到的北极海冰范围在大部分区域与实际情况相符。该产品虽已进行通道间匹配误差修正和定位精度偏差订正,但由于其搭载的微波成像仪(Microwave Radiation Imager, MWRI)天线长度有限,造成传感器探测到的地物回波信号相对较弱,难以区分海冰和近岸附近的陆地,影响了该数据集的精度和应用。为解决这一问题,本文基于美国冰雪中心(National Snow and Ice Data Center, NSIDC)发布的海冰产品对FY海冰数据集进行优化,NSIDC产品利用判断矩阵对海岸线附近的像元进行识别,并对误差像元进行不同程度的修正,由NSIDC产品计算得到的北极海冰范围与实际情况更为符合。数据集优化大大提高了FY海冰数据集的精度,研究结果表明,优化后FY海冰数据集与NSIDC产品相关系数高达0.9997,且二者日、月、年平均最大海冰范围偏差仅为3.5%、1.9%、0.9%,且FY海冰数据集优化过程对其较好的空间分异特征无明显影响。该数据集可正确地反映北极海冰范围及其变化情况,且海岸线附近海冰的分布情况更准确,可为北极海冰变化研究提供可靠的基础数据。  相似文献   

4.
帝企鹅是南极生态的指示器,其种群栖息地分布变化对研究南极气候具有重要意义,但传统的人工实地调查难以获取全面、准确的种群栖息地信息。本文依据帝企鹅种群排泄物在卫星影像上的蓝、红波段和近红外与短波红外波段的反射率差异,提出2种可以有效判别种群排泄物的光谱指数(NDII、EI),据此精确识别帝企鹅种群排泄物并确定其种群栖息地位置。根据2009年195景时相合适、质量较好的Landsat 7 ETM+卫星影像,获取了南极共计38个帝企鹅种群栖息地,其中新发现7处(Bowman Island , Dibble Glacier , Auster, Point Geologie , Cape Crozier , Brownson Islands和Rupert Coast),消失2处(Amundsen Bay 和Ledda Bay),另外25处(除Thuston Glacier, Luitpold, Sanae, Gould, Ragnhild和Beaufort Island外)位置未发生明显变化,实现了全南极帝企鹅种群栖息地的识别与定位。种群栖息地提取的正确率为94%,提取结果受限于影像质量和种群规模,且随着种群规模的提高,该方法的提取效果也越好。帝企鹅种群栖息地的分布与气候要素息息相关,种群栖息地往往倾向于气温较低和海冰密集度较高的区域,气候变化对每个种群栖息地的影响不同,因此气候与种群栖息地变化的具体关系需要长时间、区域性的观测进行研究。随着气温持续上升和海冰密集度的变化,南纬70°以北的种群栖息地面临较大的威胁,帝企鹅种群呈现向极点逐渐收缩的趋势。  相似文献   

5.
四川地区44年来气候季节划分及变化特征的研究   总被引:2,自引:0,他引:2  
利用四川地区135个台站的逐日温度资料和曾庆存等[1]提出的季节划分方法讨论了四川各区域的气候季节划分和季节变化,结果表明:(1)1961~2004年期间,四川地区季节的四季分配很不均匀,冬夏季偏长,春秋季偏短;并且四川不同区域间的季节划分差异主要表现在春秋两季的时间长度上.(2)季节划分的年际变化表现为春季西部高原地区有两次时间长度增加和两次减少的变化特征,在两次时间长度增加的过程中出现了一次明显的季节长度突变;高原与盆地过渡区1996年以后春季长度年际差异显著减小,东部盆地地区近年来春季时间长度明显增加.(3)季节强度指数表明,冬季西部高原和中部高原与盆地的过渡地区变暖、夏季在1960~1970年代变冷的趋势;东部盆地冬季在1970年代中后期至1980年代强度变化剧烈、夏季则显示出1982年以前逐渐变冷、以后逐渐变暖的特征.(4)成都城市群表现出春秋过渡季节更加短暂、四季分配更不均匀、气候变化幅度增大的特征.  相似文献   

6.
浮游植物物候能够反映浮游植物的生长变化与湖泊生态系统的变化,水温、营养盐浓度等因素对物候有重要影响。太湖富营养化程度较高,水温的影响作用日趋显著,物候与水温关系的研究对理解、控制和改善太湖生态系统具有重要意义。本研究利用2003—2018年MODIS遥感数据计算浮游植物物候指标和湖泊水表温度(Temperature of Water Surface,LSWT),通过分析太湖浮游植物物候时空变化特点探究了不同区域的物候特征,并结合LSWT揭示了浮游植物物候对LSWT变化的响应关系。结果表明:① 不同浮游植物物候指标具有不同空间分布特点,水华发生次数、峰值叶绿素a(Chla)浓度和水华总持续时间呈现由西部沿岸向湖心区递减的趋势;浮游植物生长开始时间和峰值Chla发生时间分布复杂但在沿岸区域相对较早;② 太湖可被划分为4种具有不同物候特征的区域,Ⅰ类区域主要位于贡湖湾、东部沿岸以及太湖中部开阔水域,该区Chla浓度范围为50~60 μg/L,且波动平缓,水华发生次数最少、开始最晚、持续时间最短;Ⅱ类区域主要分布于太湖西部沿岸,Chla浓度范围为50~90 μg/L且变化剧烈,该区水华发生次数最多、开始最早、持续时间最长;Ⅲ和Ⅳ类属于过渡区域,前者主要分布于梅梁湾、竺山湾及入湾口,后者主要位于南部沿岸以及太湖中部;③ 浮游植物物候对LSWT变化的响应受营养水平影响,当营养水平较高时,浮游植物的生长受LSWT的促进作用显著,LSWT年际变化的升高趋势对浮游植生长物候提前、生物量增加的影响明显,反之,则LSWT变化对浮游植物生长的影响减弱。  相似文献   

7.
依据香港特别行政区环境保护署于1999—2007年106个航次的调查资料,结合国家海洋局南海分局于1998—2007年10个航次的调查资料,简要描述和分析大鹏湾海水中可溶性无机氮(DIN)和可溶性无机磷(DIP)含量的多年平均分布变化。结果表明,DIN和DIP含量均夏、冬季较高,而春、秋季较低;受香港和深圳等陆源排放影响,四季吐露港西部和沙头角海区域的DIN和DIP含量普遍比其他区域高;夏季南澳养殖场附近水域的DIN也明显较高,可能与养殖场的饵料投放有关。大鹏湾海水中平均氮磷原子比大于16,而DIN和DIP的平均含量分别为0.069和0.009 mg/L。夏季,由于外海高盐水的入侵,底层水中DIN和DIP含量明显高于表层。9 a调查期间,大鹏湾香港海区海水中DIN和DIP含量的年际变化呈较明显下降趋势,而氮磷原子比的年际变化则呈上升趋势。  相似文献   

8.
随着我国城市化进程的加快,城市热岛难显缓解之势,有关土地利用/覆盖类型、城市规模、城市形态对城市热岛的影响已有较多研究,尚缺少气候背景对我国城市昼夜地表热岛强度的影响研究。本文通过长时序的MODIS地表温度数据,从年均、季节和昼夜3个时间尺度,从全国、气候带、城市3个空间尺度探讨了我国347个城市昼夜地表热岛强度的空间分布特征以及时间变化规律。结果表明:① 昼夜差异:我国城市年均地表热岛强度白天(1.25±0.81 ℃)高于夜晚(0.79±0.43 ℃);② 季节差异:昼夜地表热岛强度在不同季节表现不同,白天表现为夏季高,冬季弱,夜晚四个季节差异不大;③ 气候带差异:昼夜地表热岛强度分布呈现明显的空间分异。白天地表热岛强度表现为热带及亚热带地区高于温带及高原地区,其中南亚热带表现为最强,高原气候区最弱;夜晚则表现为温带高于亚热带、热带及高原地区,其中中温带最强,北亚热带最弱;④ 时空变化:白天地表热岛强度年际呈非显著下降趋势(|Z|<1.96),而夜晚呈显著上升趋势(|Z|>1.96);昼夜地表热岛强度年际变化存在季节差异,白天地表热岛强度夏季上升趋势显著高于其他季节,夜晚四个季节都呈显著上升趋势,其中冬季地表热岛强度上升趋势最大;白天呈显著上升趋势的城市主要分布在热带及南亚热带地区,夜晚呈显著上升趋势的城市广泛分布在中温带和暖温带。  相似文献   

9.
利用2003―2014年MODIS卫星遥感数据,采用EOF方法分析叶绿素浓度的时空变化特征,并探讨其影响机制。结果表明,大亚湾海域表层叶绿素浓度具有明显的时空分布特征,夏季最高,春季最低,由大亚湾顶向湾口递减,近岸高于离岸。EOF分析获得前3个模态的累积方差贡献率分别是32.5%,16.8%,8.5%,基本反映了大亚湾海域叶绿素浓度变化的主要过程。第1模态权重占绝对优势,其空间模态表明了大亚湾叶绿素浓度以霞涌至中央列岛一带海域为高值中心,变化较大区域主要位于中央列岛北部海域,第1模态的周期变化是13.3个月。第2模态主要体现为季节变化,功率谱显著周期为6个月和12个月,反映了叶绿素浓度的变化以白鹤洲为界东西两个不同的区域,高值区位于圣筑岛的东边,变率较大区域与第1模态基本一致。第3模态的方差贡献率是8.5%,高值区位于中央列岛中部和范和港南部海域,变率最大区域与第1、第2模态一致,第3模态的变化周期是8.57个月和17.14个月。大亚湾叶绿素浓度的分布及变化与海表面温度、降水、风、潮流,以及人类的影响密切相关。  相似文献   

10.
泉州港作为古代海上丝绸之路的起点,今天又成为21世纪“一带一路”的新起点。本文以泉州港1990-2014年共6期的Landsat TM/OLI遥感影像为数据源,综合应用遥感和GIS技术提取了泉州港的海岸线及海域变化信息,从海岸线的长度、变化速率、分形维数、海域变化面积和海域利用类型5个方面进行海岸线变化及其驱动力分析。研究表明:近24年来,泉州港海岸线长度增加了37.78 km,海岸线的形状总体稳定,但在局部有明显变化。海岸线变化导致的海域变化面积为68.02 km2,其中,建设用地(城市和港口建设)占用的比例最大,围海养殖也是一个重要的利用类型。但泉州港围填海新增面积的利用率不高,超过一半的围填海面积尚未被合理地开发利用。总的来看,新城区建设、临港工业产业兴起和农渔业发展导致了泉州港海岸线的变化。  相似文献   

11.
Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along...  相似文献   

12.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

13.
1 Introduction Itiswellknownthatseaiceinthepolarregionplaysanimportantroleintheglobal climatechangesasapartofclimatesystem(Carleton1989;YuanandMartinson2000, 2001;ChengandBian2002;LiuandMartinson2002;LiuandZhang2004;Gigorand Wallace2002etal).Infact,numerousmodelingstudiessuggestanimportantinfluence throughtheseaicefieldsalone(Grumbine1994,Meehl1990,Rindetal.1995).Inor dertounderstandthevariabilityofArcticandAntarcticseaicealongwiththepossiblecon nectionswithclimaticanomaliesindetail…  相似文献   

14.
The sea ice community plays an important role in the Arctic marine ecosystem. Because of the predicted environmental changes in the Arctic environment and specifically related to sea ice, the Arctic pack ice biota has received more attention in recent years using modem ice-breaking research vessels. Studies show that the Arctic pack ice contains a diverse biota and besides ice algae, the bacterial and protozoan biomasses can be high. Surprisingly high primary production values were observed in the pack ice of the central Arctic Ocean. Occasionally biomass maximum were discovered in the interior of the ice floes, a habitat that had been ignored in most Arctic studies. Many scientific questions, which deserve special attention, remained unsolved due to logistic limitations and the sea ice characteristics. Little is know about the pack ice community in the central Arctic Ocean. Almost no data exists from the pack ice zone for the winter season. Concerning the abundance of bacteria and protozoa, more studies are needed to understand the microbial network within the ice and its role in material and energy flows. The response of the sea ice biota to global change will impact the entire Arctic marine ecosystem and a long-term monitoring program is needed. The techniques, that are applied to study the sea ice biota and the sea ice ecology, should be improved.  相似文献   

15.
Dong  Chunming  Luo  Xiaofan  Nie  Hongtao  Zhao  Wei  Wei  Hao 《中国海洋湖沼学报》2023,41(1):1-16

Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s. The prediction of sea ice is highly important, but accurate simulation of sea ice variations remains highly challenging. For improving model performance, sensitivity experiments were conducted using the coupled ocean and sea ice model (NEMO-LIM), and the simulation results were compared against satellite observations. Moreover, the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed. The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant (Crhg). By reducing the Crhg constant, the sea ice compressive strength increases, leading to improved simulated sea ice states. The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength. Meanwhile, dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration, reducing the simulation bias in the central Arctic Ocean in summer. The root mean square error (RMSE) between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution. The ice thickness, especially of multiyear thick ice, was also reduced and matched with the satellite observation better in the freezing season. These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.

  相似文献   

16.
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.  相似文献   

17.
Bi  Haibo  Liang  Yu  Wang  Yunhe  Liang  Xi  Zhang  Zehua  Du  Tingqin  Yu  Qinglong  Huang  Jue  Kong  Mei  Huang  Haijun 《中国海洋湖沼学报》2020,38(4):962-984
In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY) sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer.As a response,the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover.Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice.During the recent decades,many active and passive sensors onboard a variety of satellites(QuikSCAT,ASCAT,SSMIS,ICESat,CryoSat-2,etc.) have been used to monitor the dramatic loss of Arctic MY ice.The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations.We summarize the primary satellite data sources that are used to identify MY ice.The methodology to classify MY ice and derive MY ice concentration is reviewed.The interannual variability and trends in the MY ice time series in terms of coverage,thickness,volume,and age composition are evaluated.The potential causes associated with the observed Arctic MY ice loss are outlined,which are primarily related to the export and melting mechanisms.In addition,the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion,as well as the roles of synoptic weather,are analyzed.The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed.Moreover,some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.  相似文献   

18.
Arctic sea ice in the polar region provides a cold habitat for microbial community. Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application. This paper investigated the culture condition and extraceIlular hydrolase of 14 strains of different Arctic sea ice bacteria. The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃. The optimal pH is about 8.0. They hardly grow at acid condition. 3 % NaCl is necessary for better growth. These strains have different abilities in producing amylase, protease, eellulase and lipase. Pseudoalteronomas sp. Bsi429 and Pseudoalteronomas sp. Bsi539 produced both cellulose, protease and lipase. These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.  相似文献   

19.
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号