首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Hurricanes 2004: An overview of their characteristics and coastal change   总被引:2,自引:0,他引:2  
Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.  相似文献   

2.
Storm response along the transgressive Chandeleur barrier-island arc southeast of the Mississippi delta plain is variable because of local differences in sediment supply, shoreline orientation and barrier morphology. A study of the morphological impact of Hurricane Frederic (1979) affirmed that tropical storms are the primary agents causing erosion and migration of this barrier arc.Frederic's greatest impact was in the duneless southern Chandeleurs, where sheet-flow overwash caused flattening of the barrier profile, destruction of a strip of marsh 50–100 m wide, and shoreline retreat of approximately 30 m. In contrast, overwash in the northern Chandeleurs was confined between dunes in channels established by previous storms. This channelized overwash breached the northern Chandeleur barriers in nineteen places. As Frederic passed, return flow through these channels transported overwashed sediment back to the nearshore zone. These ebb deposits were a source for longshore drift sediments, which quickly sealed storm channels, reestablishing a coherent northern Chandeleur barrier arc.These storm response patterns may help explain long-term changes in barrier morphology. During an 84-yr period (1885–1969) the southern Chandeleurs decreased 41 % in area, with an average retreat rate of 9.1 m yr?1, compared to a 15% increase in area and an average shoreline retreat rate of 7.2 m yr?1 for the northern Chandeleurs.  相似文献   

3.
Aerial photographs taken in the 1963 and 2001 and bathymetric charts, in conjunction with coastal processes are analyzed to assess changes in rate of shoreline position, seabed level, and seabed grain sizes along the Tabarka–Berkoukech beach at the north-western Tunisian coastline. The littoral cell of this beach, 12-km-long, is bounded by pronounced embayments and rocky headlands separated by sandy stretches. Although not yet very much undeveloped, this littoral is still experienced degradation and modification, especially along its shoreline, with significant coastal erosion at some places. Results obtained from analysis of shoreline position indicate that El Morjene Beach is experienced a landward retreat of more than −62 m, at a maximum rate of −1.64 m/year, whereas the El corniche beach is advanced about 16–144 m, at an average rate of 0.42 m–3.78 m/year. This beach accretion has been formed on the updrift side of the Tabarka port constructed between 1966 and 1970. Comparison of bottom contours deduced from bathymetric charts surveyed in 1881 and 1996 off the coastline between Tabarka Port and El Morjene Beach identifies erosional areas (sediment source) and accretionary zones (sediment sink). Erosion (0.87–4.35 cm/year) occurs between El kebir River Mouth and El Morjene beach, whereas accretion exists in the zone down wind of the port ranges between 0.87 and 5.21 cm/year. Morphological analyses of the shoreline and the seabed of the study nearshore area indicate that shoreline retreat corresponds to areas of seabed scour (sediment source) while shoreline accretion is associated with areas of seabed deposition (sediment sink). Furthermore, simulation of wave propagation using STWAVE model combined with grain size distributions of the seabed shows that fine sands are much dominated in depositional areas with low wave energy, whereas coarser sands in erosive zones with high wave energy. The results obtained suggest that the change of seabed morphology, wave height pattern and grain size sediment have a great influence on the modification of shoreline morphology and dynamics.  相似文献   

4.
《Comptes Rendus Geoscience》2019,351(4):340-350
The aim of this study is the reconstitution of the recent morpho-sedimentary evolution of the Medjerda River delta. We examine the spatio-temporal evolution of the Medjerda shoreline between 1936 and 2016 using satellite images, complemented by sedimentological and geochemical analyses and 210Pbex and 137Cs radiometric data. The general tendency of the shoreline evolution shows an increasing progradation (300 ± 12 m) between 1936 and 2016. Yet the mesoscale Net Shoreline Movement position (NSM) and the End Point Rate (EPR) reveal an erosion pattern estimated to be −20 m ± 0.15 m/yr during the period 1988–1999.The sedimentological analyses reveal four main lithostratigraphic units. The fine sand substratum layer (Md = 0.08 mm) decreases toward clay and silt facies (Md < 0.063 mm), rich in continental plant debris. The geochemical results reveal gradual incoming of the terrigenous component instead of marine deposits. The 137Cs/210Pbex radiometric dating confirms the functioning of the new river flow by the 1950s with the highest sedimentation rate being 3.3 cm/yr. Our results show that the Sidi-Salem dam impoundment (1981) led to a dramatic reduction of sediment discharge, a decrease of the grain size with nearly no more sand reaching the coast, and the shoreline retreat.  相似文献   

5.
Long-term retreat rates of Puget Sound's unconsolidated sediment shorelines have been difficult to quantify, and little systematic research has been completed to constrain retreat in this area. We put forward a new application of cosmogenic 10Be exposure dating to assess long-term shoreline retreat on Whidbey Island, WA by dating lag boulders exposed on the shore platform as the shoreline erodes. Production of 10Be in shoreline boulders is modulated by both tidal submergence and topographic shielding from the retreating bluff. By modeling the combined effect of these variables on 10Be production, the timing of exposure can be determined and used to calculate long-term (103–104 yr) bluff retreat rates. In rare cases, retreat rates are underestimated due to inherited 10Be. Within the study area, average retreat rates ranged between 0 and 8 cm yr? 1. Our results demonstrate the utility of cosmogenic nuclides for determining long-term shoreline retreat rates in areas with thick sediment cover, where large numbers of samples can be collected, and where the pre-depositional history of the boulders is uncomplicated.  相似文献   

6.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively.Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

7.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

8.
Three lines of evidence based on data from more than 400 boreholes and vibrocores have been used to reconstruct the evolution of the barrier islands during the Holocene transgression in southern Long Island, New York: (1) the Holocene transgressive stratigraphic sequence behind the present barriers, (2) the stratigraphic patterns of the inner shelf, and (3) the morphology of the now-buried late Pleistocene coastal features. The extensive preservation of backbarrier sediments, radiocarbon dated between 7000 and 8000 yr BP, on the inner shelf of southern Long Island suggests that the barriers have not retreated by continuous shoreface erosion alone, but have also undergone discontinuous retreat by in-place ‘drowning’ of barriers and stepwise retreat of the surf zone. Such stepwise retreat of the surf zone has prevented the backbarrier sediments from being reworked. Based on the presence of submerged barrier sand bodies in seismic records, it is inferred that about 9000 years ago, when the sea stood about 24 m below the present sea level, a chain of barriers developed on the present shelf about 7 km offshore of the present barriers. With continued sea-level rise, the – 24 m barrier built upward until the sea reached about – 15 m MSL, just prior to 7000 yr BP. The barriers were then submerged by the rapidly rising sea, and the surf zone shifted rapidly landward to a position about 2 km from the present shoreline. The surf zone overstepped to the landward margin of the old lagoon, which had become fixed at the steep seaward face of mid-Wisconsinan (?) or Sangamonian coastal barriers. During the past 5000 or 6000 years, the shoreface has retreated continuously by about 2 km. Evidence from southern Long Island and elsewhere in regions of coastal submergence indicates that rapid sea-level rise and low sand supply seem to favour the stepwise retreat of barriers, whereas slow rates of submergence and a greater supply of sand generally favour continuous shoreface retreat. Stationary upbuilding, or seaward progradation of barriers may occur when supply of sand is great, and/or submergence is slowed or reversed. Morphologic highs on the pretransgression surface (such as old barrier ridges) tend to fix the migrating barrier shoreline during either continuous retreat, or stepwise retreat of barriers.  相似文献   

9.
Landsat enhanced thematic mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret coastal changes in the zone between Kitchener drain and Damietta spit in the northeastern Nile delta, previously recognized as a vulnerable zone to the effects of any sea level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km2 to the agricultural deltaic land. About 48 km2 of backshore flats, marshes, salt pans and Manzala lagoon have been converted to productive fish farms. The main urban centers have expanded; nearly 12.1 km2 have been added to their areas, and new urban centers (Damietta harbor and the New Damietta city) with total area reach of ~35.3 km2 have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As a consequence of human activities, the size of Manzala lagoon has been reduced to more than 65%. Shoreline changes have been determined from beach profile survey (1990–2000), and comparison of 1955 aerial photographs and ETM satellite image of 2002 reveal alongshore patterns of erosion versus accretion. The short-term rate of shoreline retreat (1990–2000) has increased in the downdrift side of Damietta harbor (≃14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwaters system, with a maximum shoreline advance of ~15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man-made coastal protection structures.  相似文献   

10.
Recent projections of global climate change necessitate improved methodologies that quantify shoreline variability. Updated analyses of shoreline movement provide important information that can aid and inform likely intervention policies. This paper uses the Analyzing Moving Boundaries Using R (AMBUR) technique to evaluate shoreline change trends over the time period 1856 to 2015. Special emphasis was placed on recent rates of change, during the 1994 to 2015 period of active storm conditions. Small segments, on the order of tens of kilometers, along two sandy barrier island regions on Florida’s Gulf and Atlantic coasts were chosen for this study. The overall average rate of change over the 159-year period along Little St. George Island was ??0.62?±?0.12 m/year, with approximately 65% of shoreline segments eroding and 35% advancing. During periods of storm clustering (1994–2015), retreat rates along portions of this Gulf coast barrier accelerated to ??5.49?±?1.4 m/year. Along the northern portion of Merritt Island on Florida’s Atlantic coast, the overall mean rate of change was 0.22?±?0.08 m/year, indicative of a shoreline in a state of relative dynamic equilibrium. In direct contrast with the Gulf coast shoreline segment, the majority of transects (65%) evaluated along the oceanfront of Merritt Island over the long term displayed a seaward advance. Results indicate that episodes of clustered storm activity with fairly quick return intervals generally produce dramatic morphological alteration of the coast and can delay natural beach recovery. Additionally, the data show that tidal inlet dynamics, shoreline orientation, along with engineering projects, act over a variety of spatial and temporal scales to influence shoreline evolution. Further, the trends of shoreline movement observed in this study indicate that nearshore bathymetry—the presence of shoals—wields some influence on the behavior of local segments of the shoreline.  相似文献   

11.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

12.
The Atlantic shoreline in Patagonia, southernmost South America, is a paraglacial coast that has undergone extensive erosion and retreat since the late Pleistocene, releasing a large volume of sand and gravel to southward littoral drift. Despite regional erosive conditions, accretionary landforms developed during the Holocene in three coastal reentrants. These are, from north to south along a 200 km long shoreline stretch: (1) the cuspate foreland that underlies Bustamante Point, in the Rı́o Gallegos Estuary; (2) the cuspate foreland with incipient spit underlying Dungeness Point, in the eastern Strait of Magellan; (3) the San Sebastián Bay tidal flat; and (4) the El Páramo Spit, partly enclosing the San Sebastián Bay. These accretionary landforms contain a record of relative sea level changes for approximately the past 7 ka, and indicate a tectonically driven drop of about 3 m during growth of Bustamante Point and of 1–2 m in the other areas. Differential sea level fall influenced development of the landforms, with slower rates favoring spit development in the south.  相似文献   

13.
Changes in sea-cliff morphologies along the 30-km-long Sharon Escarpment segment of Israel's weakly cemented Mediterranean eolianite cliff line were analyzed to gain quantitative insights into erosion characteristics associated with a high-energy winter storm (10–20 year return interval). Ground-based repeat LiDAR measurements at five sites along the cliff line captured perturbations of cliff stability by basal wave scouring during the storm, subsequent post-storm gravity-driven slope failures in the cliff face above, and return of the system to transient stability within several months. Post-storm erosion, which amounted to 70% of the total volume of cliff erosion documented, resulted in dramatic local effects of up to 8 m of cliff-top retreat. And yet, at the larger scale of the 30-km cliff line examined, erosion during the storm and the year that followed affected less than 4% of the cliff length and does not appear to be above the average cliff-length annual erosion implied by previously published decadal-scale retreat rates along this sea cliff. Our results do not support a direct association between strong storm events and elevated erosion and retreat at the cliff-line scale.  相似文献   

14.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively. Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

15.
《Sedimentology》2018,65(4):1170-1212
Barrier‐island system evolution is controlled by internal and external forcing mechanisms, and temporal changes in these mechanisms may be recorded in the sedimentary architecture. However, the precise role of individual forcing mechanisms is rarely well understood due to limited chronological control. This study investigates the relative role of forcing conditions, such as antecedent topography, sea‐level rise, sediment supply, storms and climate changes, on the evolution of a Holocene wave‐dominated barrier‐island system. This article presents temporal reconstruction of the depositional history of the barrier‐island system of Rømø in the Wadden Sea in unprecedented detail, based on ground‐penetrating radar profiles, sediment cores, high‐resolution dating and palynological investigations, and shows that ca 8000 years ago the barrier island formed on a Pleistocene topographic high. During the initial phase of barrier evolution, the long‐term sea‐level rise was relatively rapid (ca 9 mm year−1) and the barrier was narrow and frequently overwashed. Sediment supply kept pace with sea‐level rise, and the barrier‐island system mainly aggraded through the deposition of a ca 7 m thick stack of overwash fans. Aggradation continued for ca 1700 years until sea‐level rise had decreased to <2 mm year−1. In the last ca 6000 years, the barrier prograded 4 to 5 km through deposition of a 10 to 15 m thick beach and shoreface unit, despite a long‐term sea‐level rise of 1 to 2 mm year−1. The long‐term progradation was, however, interrupted by a transgression between 4000 years and 1700 years ago. These results demonstrate that the large‐scale morphology of the Danish Wadden Sea shoreline influences the longshore sediment transport flux and the millennial‐scale dispersal of sediment along the shoreline. On decadal to centennial timescales, major storms induced intense beach and shoreface erosion followed by rapid recovery and progradation which resulted in a highly punctuated beach and shoreface record. Major storms contributed towards a positive sediment budget, and the sustained surplus of sediment was, and still is, instrumental in maintaining the aggradational–progradational state of the barrier island.  相似文献   

16.
Where eroding cohesive sediments are present, Lake Michigan bluffs range up to 40 m in height, exposing multiple glacial stratigraphic units. Following the model presented here, bluffs form as a wave-cut terrace erodes inland from a point near the original shoreline. The erosion plane is nearly horizontal, in contrast with the eastward dip of the glacial units inherited from underlying bedrock. Therefore, terraces eroding inland produce progressively higher bluffs and expose successively older units at the toe and beneath the lake. This process was repeated several times as lake levels sequentially dropped to their modern stage. The initial modern shoreline, and hence the width of the wave-cut terrace, was determined from four offshore seismic and bottom-sampling profiles. It was picked as an inflection point in the lake bed, occurring offshore of dipping reflectors intersecting the lake bottom. The calculated average recession rate over a 2500-year duration of the modern stage is 1.5 m/yr in contrast to average rates of approximately 0.6 m/yr measured over the last century. Thus rates decrease through time as the terrace widens and wave energy is dampened. By correlating bluff height to recession distance, a third rate of approximately 2.7 m/yr for the first 940 years of recession is calculated from relict Nipissing bluffs. The three rates define a steeply decaying exponential curve in early stages of bluff retreat, flattening into a nearly linear function after 1000 years.  相似文献   

17.
A coincidence of the Beeswax galleon shipwreck (ca. A.D. 1650–1700) and the last Cascadia earthquake tsunami and coastal subsidence at ∼A.D. 1700 redistributed and buried wreck artifacts on the Nehalem Bay spit, Oregon, USA. Ground‐penetrating radar profiles (∼7 km total distance), sand auger probes, trenches, cutbank exposures (29 in number), and surface cobble counts (49 sites) were collected from the Nehalem spit (∼5 km2 area). The field data demonstrate (1) the latest prehistoric integrity of the spit, (2) tsunami spit overtopping, and (3) coseismic beach retreat since the A.D. 1700 great earthquake in the Cascadia subduction zone. Wreck debris was (1) initially scattered along the spit ocean beaches, (2) washed over the spit by nearfield tsunami (6–8 m elevation), and (3) remobilized in beach strandlines by catastrophic beach retreat. Historic recovery of the spit (150 m beach progradation) and modern foredune accretion (>5 m depth) have buried both the retreat scarp strandlines and associated wreck artifacts. The recent onshore sand transport might re‐expose heavy ship remains in the offshore area if the wreck grounded in shallow water (<20 m water depth of closure). © 2011 Wiley Periodicals, Inc.  相似文献   

18.
An average of 230,000 cubic meters of sand is provided to the beaches of northern Monterey Bay each year by littoral transport from upcoast and from local river input. Two jetties constructed as part of a small craft harbor interrupted the littoral flow of sand and significantly altered the area's natural coastal processes. A wide protective beach immediately formed upcoast against a formerly retreating beach cliff. Sand now filling the harbor mouth each winter has led to expensive yearly dredging as well as seasonally or permanently depleted downcoast beaches. Seacliff retreat, always a problem in the area, is caused primarily by surf attack of weaker stratigraphic units and erosion along joint sets and faults, causing collapse of the bluffs. The seasonal loss of protective beaches has led to a two- to three-fold increase in the rate of downcoast cliff retreat following harbor construction except where protective rip-rap has been emplaced by property owners.  相似文献   

19.
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900 cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400 m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100 m and then subside approximately 30 m. At its maximum extent, Lake Oshkosh covered 6600 km2 with a volume of 111 km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9 m/s and peak discharge of 140,000 m3/s are predicted, which could drain 33.5 km3 of lake water in 10 days and transport boulders up to 3 m in diameter.  相似文献   

20.
The variation during 15 years in the shoreline along the North Sinai coast has been determined by analysing TM and ETM true colour Landsat images from 1986 to 2001. The analyses identified erosion and accretion patterns along the coast. The shoreline has advanced west of El Bardawil inlet1, El Bardawil inlet2, and El Arish Harbour, where the wave-induced littoral transport has been halted by jetty construction and beach growth rates are 20,681, 69,855 and 20,160 m2/year, respectively. On the downdrift side of the constructed jetties to the east, the shoreline is retreating and beaches erode at rates of −71,710, −69,968, and −11,760 m2/year, respectively. Sedimentological analyses of beach sediment samples have indicated selective transport of heavy minerals according to their densities and grain sizes. A general correspondence has been found between variation in grain size, sorting and heavy-mineral content of beach sand and the patterns of shoreline changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号