首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
<正>喜马拉雅造山带是印度板块与欧亚板块相碰撞的结果,由于陆-陆碰撞导致的喜马拉雅崛起过程已为许多学者所关注。喜马拉雅东构造结位于喜马拉雅造山带东侧,处于印度板块、缅甸板块和青藏块体的陆-陆碰撞的核心部位,是青藏高原东南缘地形变化最剧烈、构造最复杂的地区,这里曾经在1950年发生察隅MS8.6级大地震,是开展地球动力学研究的天然实验室。本文利用128个地震台站分析的横波分裂结果表征的地幔变形场与~3000个GPS和断裂第四纪滑动速率数据得到的地表变形场数据联合分析了东构造  相似文献   

2.
喜马拉雅东构造结(简称东构造结)周围地区是青藏高原构造应力作用和构造变形最强的地区,也是地球上变化剧烈、构造类型复杂、保存完整的地区.该地区汇集了喜马拉雅、拉萨、羌塘、川滇地块和印度板块及主边界断裂、主中央断裂、雅鲁藏布江断裂、嘉黎断裂、怒江断裂、墨脱断裂、阿帕龙断裂等,可以说东构造结周围地区是检验青藏高原晚新生代构造变形机制不同理论和学说的关键地区之一.  相似文献   

3.
印度板块与欧亚板块在60~50Ma的碰撞不仅造成了喜马拉雅造山带的形成,还导致了自印度与欧亚板块缝合带以北2 000km宽的广大地区逐步隆升,形成号称"世界屋脊"的青藏高原。青藏高原的形成对欧亚大陆的构造格局、中亚地区乃至全球的气候变化产生了深远的  相似文献   

4.
横跨喜马拉雅造山带的构造运动转换与变形分配   总被引:1,自引:0,他引:1       下载免费PDF全文
喜马拉雅造山带包含喜马拉雅弧和东、西构造结3个基本部分,它们是大陆碰撞后印度板块继续向北移动,并向西藏高原下俯冲产生的构造变形系统.该系统的重要地质特征之一,是同时存在多种不同样式、不同或相反性质的地壳变形,例如地壳南北向缩短与东西向伸展,高原隆起与山间盆地下沉,与造山带走向大致平行的向北倾斜或向南倾斜的逆断层,东西向...  相似文献   

5.
喜马拉雅东构造结地处印欧大陆碰撞前缘,主要受喜马拉雅、拉萨、羌塘、川滇等地块和印度板块相互作用,区域构造变形强烈,是喜马拉雅造山带变形最强烈的地区之一,地震频发且主要呈条带状展布.为揭示该地区地震活动及发震机制、断裂现今运动状态和区域应力应变模式,本文以喜马拉雅东构造结及周缘地区为研究区,采用双差定位法对2008—2018年间65 663个M≥1.0的地震事件进行重定位,应用CAP方法对2009—2021年间163个M≥3.5的地震事件进行震源机制解反演.在此基础上,收集研究区前人所得震源机制解共1 156个,使用区域阻尼应力张量反演获得了中上地壳(0~35 km)区域应力场.研究结果显示,区内地震主要沿断裂展布,其中喜马拉雅东构造结、高原中部拉张裂谷、川滇地块和滇缅地块地震活动频繁.地震深度主要分布于5~25 km,川滇和滇缅地块内部地震相对于拉萨、羌塘地块的数量和优势深度有明显增大.不同类型的震源机制分布具有明显规律性,东构造结处各种机制类型地震频发;走滑型震源机制主要沿大型边界断裂分布;正断机制地震发生于川滇地块的西边界断裂;逆断地震发育于印欧大陆碰撞前缘.研究区主压应力轴水平方...  相似文献   

6.
印度—欧亚板块的挤压碰撞形成了长达2 500 km的喜马拉雅造山带.北京时间1950年8月15日22点09分,在喜马拉雅东构造结的墨脱—察隅一带发生了MS8.6地震,是世界上有历史地震记录以来发生的最大的内陆型地震,整个青藏高原及毗邻的印度平原均有明显震感,给周边地区带来重大的经济和财产损失.我们基于前人在地震灾害、地震定位和震源机制等方面获得的研究成果,对墨脱—察隅大地震的震源参数、震源区地下结构、发震断层的构造特点进行了系统回顾.在此基础上,我们收集了不同机构给出的历史地震目录资料,总结了震前20年和震后10年较为完整的5.0级以上地震目录,分析了4个不同时间和空间发展阶段的地震活动性;同时利用现代地震目录和我们在震源区架设的近台观测波形资料,探讨了1964年以来发生的中小地震、2017年米林6.9级地震和2019年墨脱6.3级地震的发生机制.东构造结地区构造背景复杂,发育了三个不同方向、依次向南迁移的次级构造结,即南迦巴瓦构造结、桑构造结及阿萨姆构造结.在最年轻的阿萨姆构造结地区,印度板块不仅沿着米什米逆冲断裂向NE方向俯冲,同时沿着主前锋逆冲断裂向NW方向...  相似文献   

7.
新生代以来,印度板块和欧亚板块发生碰撞形成了喜马拉雅造山带和青藏高原,印度板片在喜马拉雅东构造结处缅甸弧俯冲带进入深部地幔.开展缅甸弧俯冲带下方地幔间断面的研究有助于认识印度大陆岩石圈的碰撞-俯冲过程及其对上地幔结构的影响.本文选用了发生于缅甸弧地区的3个中源地震事件,获取了欧洲和美国阿拉斯加地区多个密集地震台网/台阵...  相似文献   

8.
若尔盖盆地及周缘褶皱造山带地壳结构—深地震测深结果   总被引:1,自引:0,他引:1  
松潘-甘孜地块位于青藏高原东北部、由近东西向构造向近南北向构造转折的部位,若尔盖盆地位于该地块核心。利用近期在该区域完成的深地震测深结果,建立了若尔盖盆地及周缘褶皱造山带地壳结构模型,对若尔盖盆地基底结构、性质,若尔盖高原盆地与周缘褶皱造山带构造关系,青藏高原东北缘地壳形变增厚、壳内解耦松弛进行了研究。结果表明:若尔盖盆地近地表三叠纪岩层为高致密(2.65-2.75g·cm^-3)和高速度(约5.6km·s^-1)介质岩性,形成了特殊的“中生代基底”构造;松潘。甘孜地块在青藏高原隆升、物质东流以及周缘稳定地块的阻挡过程中被改造为相对稳定的若尔盖高原盆地和盆地周缘更为活动的褶皱造山两类不同地壳结构性质的构造单元;青藏高原东北部的地壳增厚、壳内解耦主要发生中下地壳,这种壳内以低速为主、多反射界面结构特征在若尔盖盆地周缘褶皱带造山带更为明显,突出了褶皱造山构造区域中下地壳内部经历了更为强烈的构造形变;若尔盖盆地及南北两侧褶皱造山带地壳厚度约50km,未发现“山根”构造,推测在褶皱造山后期,青藏高原地壳东流物质在周边刚性地块阻挡下围绕东构造结、沿着相对松弛的南侧方向顺时针转向流出,其结果使若尔盖盆地周缘褶皱造山带经历了强烈的伸展构造作用。  相似文献   

9.
跨越中、印、缅三国交界的喜马拉雅“东构造结”地区(92°E~97°E,26°N~30°N)有一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文应用卫星重力异常资料作为近似空间重力异常,经计算给出的布格重力异常,其特征与该地区的地形高程呈很好的镜像相关.据此得到该区不同方位的3个地壳深部结构剖面.重力异常反演求得青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,即呈现出3个不同构造单元的展布.同时求得“东构造结"区由高密度的刚性物质构成,在印度洋板块的碰撞、挤压作用下呈向北运移,并插入青藏高原东缘.基于这样的构造格局和深层动力过程,导致了青藏高原东南缘和东北缘的强烈构造运动,大、小地震的频频发生和矿产资源的聚集.  相似文献   

10.
祁连造山带位于青藏高原东北缘,距南侧的喜马拉雅碰撞带前缘1 500 km,以一个宽阔的(东西长约1 000 km,南北宽200~400 km)、NW走向的造山带的形式被夹持于北侧的河西走廊盆地与南侧的柴达木盆地之间,西侧被NEE走向的阿尔金左行走滑断裂带所截切,北缘以青藏高原北缘断裂带,祁连山北缘断裂带和祁连山东缘断裂带与河西走廊盆地相邻,南东方向与西秦岭造山带相接,东缘与鄂尔多斯地块相邻.记录了新生代以来印度板块和亚洲大陆板块碰撞和青藏高原边缘造山和地壳变形的重要过程.对其地壳深部结构的探测是研究青藏高原隆升和向北扩展,理解印度与欧亚大陆碰撞的大陆内部构造作用的关键手段.自1980年代以来,前人在研究区实施了多条宽角反射/折射剖面,以揭示祁连造山带及周缘的地壳深部结构.本文通过对这些宽角反射/折射剖面的收集汇总和梳理分析,以探讨祁连造山带不同区段下方莫霍面起伏及深度差异,研究结果显示:祁连造山带莫霍面埋深整体自西向东变浅,最深的莫霍面位于北祁连造山带内的哈拉湖附近;结合其他地质与地球物理资料,本文推测莫霍面深度的起伏及变化状态揭示了祁连造山带由西向东不同的地壳缩短方式,其中西段最深的...  相似文献   

11.
收集了喜马拉雅东构造结地震台阵17个宽频带流动地震台站,以及东构造结周边地区布设的32个宽频带流动台站和中国地震台网10个宽频带固定台站的远震波形资料,并对这共计59个台站所记录的XKS(SKS,SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,并结合其他研究在该区域取得的各向异性参数结果,获得了喜马拉雅东构造结及周边地区上地幔各向异性图像.从得到的结果来看,喜马拉雅东构造结的上地幔快波方向基本为NE-SW方向,其周边地区的快波方向自西向东呈现出NE-SW方向到E-W方向,然后到NW-SE方向,最后为N-S方向的逐步变化,其周边地区的快波方向表现出围绕东构造结顺时针旋转的变化特征.通过该区域快波方向与地表构造走向和运动速度场变化特征的对比分析,喜马拉雅东构造结及周边地区的快波方向与该区域地表构造走向和由GPS得到地表运动速度场运动趋势相一致,说明该区域地表变形特征与深部上地幔变形特征是一致的,其岩石圈变形是一种垂直连贯变形模式.喜马拉雅东构造结的快波方向为NE方向,与印度板块向青藏高原下NE方向的俯冲一致,说明稳定坚硬的印度块体向NE方向俯冲到青藏高原下方是引起该区域岩石圈变形的主要原因.围绕喜马拉雅东构造结的周边地区的快波方向呈现出顺时针旋转的环形变化特征,我们推测稳定坚硬的印度板块对青藏高原NE方向的俯冲作用,又由于缅甸块体下俯冲板片的东向俯冲和西向后撤对缅甸弧后的岩石圈产生了被动的西向拖曳力作用,使得绕喜马拉雅东构造结周边地区岩石圈产生了顺时针旋转的环形变形,进而形成了快波方向绕喜马拉雅东构造结顺时针旋转的各向异性特征.  相似文献   

12.
<正>帕米尔构造结是印度板块向欧亚大陆碰撞的两个突出支点之一,是中国大陆受板块动力作用最强烈、地震活动最频繁的地区之一,是揭示青藏高原形成与演化历史的关键地区之一。在印度板块的挤压作用下,帕米尔内部发生强烈的缩短变形,整体向北发生了大规模的逆冲推覆与走滑。前人对帕米尔内部缩短变形和边缘逆冲走滑的研究多集中在帕米尔内部,包括构造学、岩石学和年代学等方面。前陆盆地的沉积物记录了毗邻造山带的隆升剥蚀历  相似文献   

13.
2017年西藏米林6.9级地震震源参数及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
白玲  李国辉  宋博文 《地球物理学报》2017,60(12):4956-4963
北京时间2017年11月18日06时34分,西藏自治区林芝市米林县发生了M6.9级地震.地震位于印度板块向欧亚板块插入的东北犄角,是喜马拉雅造山带地壳缩短和构造旋转变形最为强烈的部位.本研究利用多种近震和远震台网记录的波形和到时数据,对该地震的震源位置和发震时刻进行重新确定.结果表明,地震震源深度为海平面以下7 km±2 km (或地表以下10 km±2 km),经纬度为(29.87°N±0.01°N,95.02°E±0.01°E).结合其他地球物理和地质学资料,我们推测该地震发生在NNW向西兴拉断裂带,南迦巴瓦构造结北东向的逆冲推覆和青藏高原东南向逃逸的侧向挤出是该地震发生的主要构造背景.  相似文献   

14.
青藏高原南缘现今地球动力学研究   总被引:3,自引:1,他引:3       下载免费PDF全文
高名修 《地震地质》1996,18(2):143-155
喜马拉雅构造带于新生代时期经历了两代受力条件截然不同的形变。早期造山挤压形变与造山后的引张形变、青藏高原和高喜马拉雅的大幅度抬升。大致低喜马拉雅范围即青藏高原南缘,现今构造活动与青藏高原和高喜马拉雅块断抬升相辅相成。流行的板块聚合动力学模式,即使早新生代发生过,晚新生代以来已经灯熄。东亚大陆现代形变与地震活动的驱动力不可能源于青藏高原南缘被动挤压,而是取决于与高原隆起相关的深部主动动力学过程  相似文献   

15.
若尔盖与西秦岭地震反射岩石圈结构和盆山耦合   总被引:10,自引:0,他引:10       下载免费PDF全文
松潘地块北缘的若尔盖盆地与西秦岭造山带相接触,构成青藏高原东北缘典型的新生代盆山构造.其岩石圈结构与深部构造关系,记录了青藏高原东北缘板块碰撞的深部过程,同时又关联着若尔盖盆地油气远景的评价.2004年秋冬季,我们完成了第一条跨越若尔盖盆地和西秦岭造山带的深地震反射剖面.整个剖面全长254 km,分5段完成,其中第2段剖面(简称SP04_2)横过盆山结合部位.SP04_2剖面首次揭示若尔盖盆地-西秦岭造山带盆山结合部位的岩石圈结构,发现了若尔盖盆地和西秦岭造山带下地壳均以北倾为主的强反射特征,提供出若尔盖盆地下地壳整体向西秦岭造山带俯冲的地震学证据,揭示了若尔盖盆地和西秦岭造山带在挤压构造体系下形成的深部构造关系.而近于平的Moho反射特征又反映出两者在造山后期经历了强烈的伸展作用.  相似文献   

16.
正中国大陆的强震活动与印度板块、太平洋板块、菲律宾板块和欧亚大陆相互作用的构造背景密切相关。在这样的构造背景下,板块相互作用边界的动力学变化对中国大陆内部强震的时空分布同样有重要影响。历史上,1900年以来喜马拉雅造山带发生8级以上地震4次,这些大地震对板块边界动力学变化具有重要贡献,对中国大陆西部地震活动影响显著。以最  相似文献   

17.
东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据   总被引:19,自引:0,他引:19  
发生在始新世((45±5) Ma)的印度板块和欧亚大陆之间的碰撞和持续的陆内汇聚作用使得青藏高原及其周边地区的地壳缩短了大约2 000~2 500 km. 印度板块在东喜马拉雅构造结深深地插入青藏高原之中, 造成地壳的大规模缩短和抬升. 分布在青藏高原南部, 内部仅遭受了轻弱的新生代变形的各构造地层单元, 包括北喜马拉雅岩带、拉萨以及羌塘地块, 向东延伸到该地区时, 总宽度由700 km剧减至200 km, 其内部的变形程度也随之加强. 初步的研究表明, 这些构造单元的宽度变化是地壳水平缩短的结果, 缩短量为500 km, 缩短是通过地壳碎片的冲断、褶皱和侧向逃逸完成的. 尽管在该地区地壳缩短量是如此之大, 但是这些构造地层单元仍然是连续的, 向南东方向一直可以追索到云南西部.  相似文献   

18.
根据地球物理探测资料,基于二维模型,利用黏弹性有限元方法,研究青藏高原西、东剖面的地壳均衡和岩石圈根拖曳的构造应力机制.数值模拟结果表明,青藏高原西部(B B′剖面)的造山水平挤压力主要来源于岩石圈根的向下拖曳,印度板块向北挤压为次要因素,形成“山隆盆降”的地表形态;而青藏高原东部(A A’剖面)岩石圈根向下拖曳还不足以形成硬上地壳中挤压造山的主要力源.对比结果认为,青藏高原的深部层圈结构和应力体系在西、东部存在明显的差异,反映了高原内部造山演化的西、东分异特征.  相似文献   

19.
扬子板块东北缘中元古代的大地构造划分   总被引:1,自引:0,他引:1  
扬子板块东北缘存在四条主要的中元古代变质带,自南向北依次为江南变质带、沿江变质带、云台一张八岭变质带和连云港一泗阳变质带。它们分别为中元古代的古弧后盆地、火山岛弧、裂谷及弧前盆地,扬子板块东北缘中元古代为活动大陆边缘构造体系。苏(北)胶(南)变质造山带应解体,其中一部分属扬子大陆边缘体系。  相似文献   

20.
由于印度洋板块向亚欧板块俯冲使青藏高原不断隆起,其形成不仅导致了亚洲大陆内部强烈的晚新生代构造变形,还对其边缘地区的地貌格局产生重大影响.青藏高原东北缘是青藏高原向北东方向扩展的前缘部位,是印度与欧亚两大板块碰撞作用由近南北方向向北东、东方向转换的重要场所.本文利用2004年和2008年完成的深地震反射剖面资料,采用关键处理技术和参数开展唐克-合作剖面与合作-临夏剖面联线处理,获得总长约400 km的深地震反射剖面,完整揭示了西秦岭造山带及其两侧盆地的地壳结构和构造变形样式.结果显示西秦岭造山带下地壳向若尔盖逆冲推覆的深部构造特征;西秦岭下地壳北倾的强反射及其北侧南倾的强反射特征揭示出扬子与华北两个大陆板块在西秦岭造山带下的汇聚行为.Moho的埋深和起伏形态表明青藏高原东北缘地壳经历了高原隆升后强烈的伸展减薄作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号