首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is commonly assumed that high-mass X-ray binary (HMXB) populations are little affected by metallicity. However, the massive stars making up their progenitor systems depend on metallicity in a number of ways, not least through their winds. We present simulations, well-matched to the observed sample of Galactic HMXBs, which demonstrate that both the number and the mean period of HMXB progenitors can vary with metallicity, with the number increasing by about a factor of 3 between solar and Small Magellanic Cloud (SMC) metallicity. However, the SMC population itself cannot be explained simply by metallicity effects; it requires both that the HMXBs observed therein primarily sample the older end of the HMXB population and that the star formation rate at the time of their formation was very large.  相似文献   

2.
We show that the explicit assumption of a chemically inhomogeneous interstellar medium allows a better reproduction of the metallicity distribution of G-dwarfs in the solar neighbourhood. The inhomogeneity is considered by assuming that at any time stars are born with a spread in their metallicities, the spread being a Gaussian in the logarithm of the metallicity around the mean metallicity of that epoch. We show that for various simple models of chemical evolution, the fit to the G-dwarf metallicity curve improves considerably once the above assumption is applied. We show that the parameters obtained from the fitting also give acceptable predictions for the age-metallicity relation. We also find that if we use a G-dwarf metallicity function corrected for the scale height inflation of stars, the conventional models of chemical evolution cannot match the shape of the curve, at least under the instantaneous recycling approximation applied to a chemically homogeneous ISM. Under the inhomogeneous ISM approximation, the predicted shapes are found to be better, though not totally satisfactory.  相似文献   

3.
Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies from the Sloan Digital Sky Survey, we analyzed their chemical evolution history using the revised chemical evolution model of Larsen et al. Our sample covers a much larger metallicity range (7.2 < 12 log(O/H) < 9.0). We found that, in order to reproduce the observed abundance pattern and gas fraction over the whole metallicity range, a relatively continuous star formation history is needed for high metallicity galaxies, while assuming a series of instantaneous bursts with long quiescent periods (some Gyrs) for low metallicity galaxies. Model calculations also show that only the closed-box model is capable of reproducing the observational data over the whole metallicity range. Models that consider the ordinary winds and/or inflow can only fit the observations in the low metallicity range, and a model with enriched wind cannot fit the data in the whole metallicity range. This implies that the current adopted simple wind and inflow models are not applicable to massive galaxies, where the underlying physics of galactic winds or inflow could be more complicated.  相似文献   

4.
Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal‐poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1000 the solar metallicity and 4 stars with about 1/10000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X‐shooter has the unique capability of performing the necessary follow‐up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr,...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco‐Italian X‐shooter GTO. The two stars were targeted to be of metallicity around –3.0, the analysis of the X‐shooter spectra showed them to be of metallicity around –2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X‐shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Metallicity, planetary formation and migration   总被引:1,自引:0,他引:1  
Recent observations show a clear correlation between the probability of hosting a planet and the metallicity of the parent star. As radial velocity surveys are biased, however, towards detecting planets with short orbital periods, the probability–metallicity correlation could merely reflect a dependence of migration rates on metallicity. We investigated the possibility, but find no basis to suggest that the migration process is sensitive to the metallicity. The indication is, therefore, that a higher metallicity results in a higher probability for planet  formation .  相似文献   

6.
王龙  周洪楠 《天文学报》2002,43(3):302-326
选用银河系中29个累积光谱型为F型的球状星团样本。根据它们的视向速度,绝对自行等参数,归算处理后得出了各样本星团的空间分布和运动速度。并以此作为初始条件,在给定的3种银河系引力势模型中,采用数值积分方法计算出各样本星团的运动轨道。计算结果表明:(1)大部分样本星团都位于银心距5kpc-10kpc的范围内,相对于银心呈球对称分布,它们的速度也呈椭球分布;(2)29个样本星团按其金属度大小和基本性发类,可分属HB和MP两个次系,且样本星团数随金属度[Fe/H]而变化,在[Fe/H]=-1.6处出现一个峰值;(3)所有样本星团的轨道运动都呈周期性,大都在一个有界而不封闭的周期轨道上运动,其最大银心距大都在40kpc以内。不同的引力势模型对球状星团轨道的具体形态影响不大,在给定的引力势模型下,当某些星团的运动轨道穿越距银心1kpc附近的区域时会出现“混沌”行为。而样本星团的金属度与其轨道形态之间的相关性并不明显;(4)29个样本星团的轨道半长轴、远银心距和方位周期随金属度的变化规律基本相似。轨道偏心率与金属度有关,对于所选的晕族样本星团而言,大约有24%的样本星团的轨道偏心率低于0.4,不同的引力势模型对近银心距、偏心率和参数的不确定度等量影响较小,但是对远银心距、径向周期和方位周期等参数影响较为明显。  相似文献   

7.
The mean metallicity of the Milky Way thin disc in the solar neighbourhood is still a matter of debate, and we recently proposed an upward revision. Our star sample was drawn from a set of solar neighbourhood dwarfs with photometric metallicities. In a very recent study, it has been suggested that our metallicity calibration, based on Geneva photometry, is biased. We show here that the effect detected is not a consequence of our adopted metallicity scale, and we confirm that our findings are robust. On the contrary, the application to Strömgren photometry of the Schuster & Nissen metallicity scale is problematic. Systematic discrepancies of  ∼0.1–0.3 dex  affect the photometric metallicity determination of metal-rich stars, on the colour interval  0.22 < b − y < 0.59  , i.e. including F and G stars. For F stars, it is shown that this is a consequence of a mismatch between the standard sequence   m 1( b − y )  of the Hyades used by Schuster & Nissen to calibrate their metallicity scale, and the system of Olsen. It means that although the calibration of Schuster & Nissen and Olsen's photometry are intrinsically correct, they are mutually incompatible for metal-rich F-type stars. For G stars, the discrepancy is most probably the continuation of the same problem, albeit worsened by the lack of spectroscopic calibrating stars. A corrected calibration is proposed that renders the calibration of Schuster & Nissen applicable to the catalogues of Olsen. We also give a simpler calibration referenced to the Hyades sequence, valid over the same colour and metallicity ranges.  相似文献   

8.
晚型星系金属丰度与自转速度的关系   总被引:1,自引:0,他引:1  
星系物质化学组成的研究不仅对于理解有关星系形成和演化的各种物理过程具有重要意义,而且还可以对星系形成和演化的各种理论模型提供重要的约束。随着观测技术及理论工作水平的不断提高,利用星系的大量观测资料来系统地研究星系化学组成与星系宏观性质之间的关系将成为可能。星系金属丰度与光度之间的强相关性以及晚型星系金属丰度与自转速度的关系即是其中最有意义的内容之一。全面回顾了星系金属丰度与星系宏观观测性质间关系的研究历史,重点评述了晚型星系金属丰度与自转速度关系的最新研究进展,详细讨论了目前对此类关系的物理解释及其对星系形成和演化模型的影响。  相似文献   

9.
We explore whether the rest-frame near-ultraviolet spectral region, observable in high-redshift galaxies via optical spectroscopy, contains sufficient information to allow the degeneracy between age and metallicity to be lifted. We do this by first testing the ability of evolutionary synthesis models to reclaim the correct metallicity when fitted to the near-ultraviolet spectra of F stars of known (subsolar and supersolar) metallicity. F stars are of particular interest because the rest-frame near-ultraviolet spectra of the oldest known elliptical galaxies at   z > 1  appear to be dominated by F stars near to the main-sequence turn-off.
We find that, in the case of the F stars, where the Hubble Space Telescope ultraviolet spectra have a high signal-to-noise ratio, fitting models in which the metallicity is allowed to vary as a free parameter is rather successful at deriving the correct metallicity. As a result, the estimated turn-off ages of these stars yielded by model-fitting are well constrained. Encouraged by this we have fitted these same variable-metallicity models to the deep, optical spectra of the   z ≃ 1.5 mJy  radio galaxies 53W091 and 53W069 obtained with the Keck telescope. While the age and metallicity are not so easily constrained for these galaxies, we find that even when metallicity is allowed as a free parameter, the best estimates of their ages are still ≥3 Gyr, with ages younger than 2 Gyr now strongly excluded. Furthermore, we find that a search of the entire parameter space of metallicity and star formation history using MOPED leads to the same conclusion. Our results therefore continue to argue strongly against an Einstein–de Sitter universe, and favour a Λ-dominated universe in which star formation in at least these particular elliptical galaxies was completed somewhere in the redshift range   z = 3–5  .  相似文献   

10.
We select 107 blue-core galaxies from the MaNGA survey, studying their morphology, kinematics as well as the gas-phase metallicity. Our results are as follows:(i) In our sample, 26% of blue-core galaxies have decoupled gas-star kinematics, indicating external gas accretion;15% have bar-like structure and 8% show post-merger features, such as tidal tails and irregular gas/star velocity field. All these processes/features, such as accreting external misaligned gas, interaction and bar, can trigger gas inflow. Thus the central star-forming activities lead to bluer colors in their centers(blue-core galaxies).(ii) By comparing with the SDSS DR7 star-forming galaxy sample, we find that the blue-core galaxies have higher central gas-phase metallicity than what is predicted by the local mass-metallicity relation. We explore the origin of the higher metallicity, finding that not only the blue-core galaxies, but also the flat-gradient and red-core galaxies all have higher metallicity. This can be explained by the combined effect of redshift and galaxy color.  相似文献   

11.
By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, \(\hbox {Sun}^{\prime }\)s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (\(\ge \)1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of \({\sim }\)0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.  相似文献   

12.
Classical Cepheids remain a cornerstone of the cosmic distance scale, and thus characterizing the dependence of their light amplitude on metallicity is important. Period-amplitude diagrams constructed for longer-period classical Cepheids in IC 1613, NGC 3109, SMC, NGC 6822, LMC, and the Milky Way imply that very metal-poor Cepheids typically exhibit smaller V-band amplitudes than their metal-rich counterparts. The results provide an alternate interpretation relative to arguments for a null and converse metallicity dependence. The empirical results can be employed to check predictions from theoretical models, to approximate mean abundances for target populations hosting numerous long-period Cepheids, and to facilitate the identification of potentially blended or peculiar objects.  相似文献   

13.
1 INTRODUCTION In the past years, we were thrilled to the reports of discoveries of many planets around stars.These planetary systems outside the solar system (if exist) provide not only an independenttest of the formation theory of the solar system but also a chance to search for extraterrestriallife in the universe. Many studies have been made to identify the particularities of these stars,among which spectroscopic studies (e.g. Gonzalez et al. 2001; Santos et al. 2001; Zhao etaL. 2001…  相似文献   

14.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

15.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

16.
We perform a comparative analysis of the spatial distribution of young (<50 Myr) open star clusters and field Cepheids with different metallicities. A significant fraction of young clusters are shown to have low metallicities atypical of field Cepheids. Both types of objects exhibit approximately equal (in magnitude) negative radial metallicity gradients, while their azimuthal metallicity gradients differ outside the error limits and have opposite signs. Among the stellar complexes identified by young clusters, the most metal-poor clusters are grouped in the Perseus complex. It is the clusters of this complex that are responsible for the radial and azimuthal metallicity gradients among young clusters. The described properties are indicative of a weak mixing of interstellar matter before the onset of star formation there. Significant differences between the spatial distributions of open clusters and field stars with different metallicities suggest different conditions required for the formation of these types of objects.  相似文献   

17.
We show evidences that gas outflows occur in starburst galaxies as superbubbles evolve. We then question whether hot gas will be expelled and enrich the IGM with metals or be retained within the host galaxy. For this purpose we construct three extreme scenarios of the star formation histories for a sample of dwarf galaxies using either their present metallicity or their luminosity. The three scenarios imply different mechanical energy input rates, those are compared with theoretical lower limits for the ejection of processed matter out of host galaxies. The comparison strongly points at the existence of extended gaseous haloes acting as a barrier that allows these galaxies to retain their metals and enhance their abundance. Our findings strongly point that continuous star-forming processes, rather than coeval bursts, must contribute to the overall metallicity in our galaxy sample. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
The problem of the chemical composition gradient in the Galactic disk is studied based on a sample of metallicity estimates of open star clusters, using Gaia DR2-improved distance estimates. A clearly non-monotonic variation was observed in the average metallicity of clusters with increasing Galactocentric distance. One can clearly see the metallicity jump of 0.22 in [Fe/H] at a Galactocentric distance of about9.5 kpc, which appears to be linked to the outer boundary of the thinnest and youngest component of the Galactic disk. The absence of a significant metallicity gradient in the internal(R 9 kpc) and external(R 10 kpc) regions of the disk demonstrates the absence of noticeable metal enrichment at times of the order of the ages corresponding to those of the disk regions under consideration. Observational data show that the disk experiences noticeable metal enrichment only during the starburst epochs. No significant dependence was identified between the average metallicity and the age of the clusters.  相似文献   

19.
疏散星团是探究银河系结构与演化的良好示踪体,一直以来颇受关注.之前关于疏散星团的研究中,仅有一小部分疏散星团有金属丰度参数,而且,金属丰度的测量,是基于不同质量的观测数据,采用了不同的方法.收集了一个年龄大于2 Gyr的老年疏散星团样本,通过整理这些星团成员星的金属丰度数据,一方面,以星团NGC 2682为例,对比了不同光谱巡天项目给出的星团成员星金属丰度的系统差异;另一方面,计算了星团成员星金属丰度的平均值和中位值,作为该疏散星团的金属丰度推荐值.此外,还利用该样本探究了银盘径向金属丰度梯度随时间的演化,结果表明,早期银盘有着更加陡峭的径向金属丰度梯度,随着演化时间的增加,银盘径向金属丰度梯度逐渐趋于平缓,为银盘化学演化模型提供了更加严格的观测约束.  相似文献   

20.
We present the results of a new analysis of Be abundances in a large sample of stars, spanning the metallicity range -2.5 ≤ [Fe/H] ≤ - 0.7. The observations were taken with the Ultraviolet and Visible Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT). With this new set of high quality data we aim at further investigating the trend of Be with metallicity, the possible presence of dispersion, and their implications for cosmic-ray and supernovae physics. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号