首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
高山融雪是塔里木河源流区重要的产流方式,4个山区流域具有面积大、测站稀少、降雨与融雪混合补给径流和显著局部降雨等特征.以开都河流域为研究区,分析流域特征对SRM融雪径流模型参变量的影响,确定相应选取策略以提高融雪径流模拟预报精度,为相似流域融雪径流模拟提供参考.研究结果表明:(i)气温输入控制模拟径流的整体趋势,对模拟精度起决定性作用.但测站日均气温数据通常不能代表流域同高程的平均水平,直接作为输入会导致很大误差.基于遥感积雪图和模拟结果分析,开都河流域选择0.5倍巴音布鲁克站日最大气温作为流域平均气温较为合理.(ii)由于雨量站稀少和局部降雨特征显著,计算各高程分带平均降水并不现实.将测站降雨乘以放大系数,并借助参数"降雨径流系数"进行校正,可以满足模型对降雨输入的需求.(iii)根据融雪和降雨位置变化,调整参数"滞时"取值对提高局部洪峰过程的模拟精度非常重要.(iv)随气温升高,降雨增多,未能被有限测站完全监测,导致模拟精度逐步降低.  相似文献   

2.
开都河流域融雪径流模拟研究   总被引:1,自引:0,他引:1  
高山融雪是塔里木河源流区重要的产流方式,4个山区流域具有面积大、测站稀少、降雨与融雪混合补给径流和显著局部降雨等特征.以开都河流域为研究区,分析流域特征对SRM融雪径流模型参变量的影响,确定相应选取策略以提高融雪径流模拟预报精度,为相似流域融雪径流模拟提供参考.研究结果表明(i)气温输入控制模拟径流的整体趋势,对模拟精度起决定性作用.但测站日均气温数据通常不能代表流域同高程的平均水平,直接作为输入会导致很大误差.基于遥感积雪图和模拟结果分析,开都河流域选择0.5倍巴音布鲁克站日最大气温作为流域平均气温较为合理.(ii)由于雨量站稀少和局部降雨特征显著,计算各高程分带平均降水并不现实.将测站降雨乘以放大系数,并借助参数"降雨径流系数"进行校正,可以满足模型对降雨输入的需求.(iii)根据融雪和降雨位置变化,调整参数"滞时"取值对提高局部洪峰过程的模拟精度非常重要.(iv)随气温升高,降雨增多,未能被有限测站完全监测,导致模拟精度逐步降低.  相似文献   

3.
将HBV径流模型进行改进 ,使之适合于中国西北干旱区内陆河山区流域的特征及径流形成过程 ,从而建立了用以模拟出山月径流量对气候变化响应的模型 .以河西走廊黑河山区流域为例 ,对不同的年平均气温和年降水量的变化趋势条件下出山径流的响应进行了模拟计算 .结果表明 ,如到 2 0 30年气温升高 0 .5℃ ,降水保持不变 ,5月和 1 0月的径流量将增加 ,这表明积雪融水对河流的补给将增加 ,但 7月和8月由于蒸发量的增加将使径流量有所减少 ,致使年径流量将减少 4% .如降水保持不变 ,气温升高 1℃时 ,除 5 ,6月份径流量有所增加外 ,7,8月份的径流量将减少较多 ,而年径流量将减少 7.1 1 % .若气温保持不变 ,降水量增加 1 0 % ,径流量将增加5 2 7% ;降水量增加 2 0 % ,径流量将增加 1 2 .35 % .当气温升高 0 .5℃ ,降水增加 1 0 %时 ,径流量仅增加 1 .6 2 % .  相似文献   

4.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

5.
气候变化对沅江流域径流影响研究   总被引:1,自引:0,他引:1  
陈喜  苏布达  姜彤  施雅风 《湖泊科学》2003,15(Z1):115-122
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文在水量平衡基础上,建立考虑气象要素和地形变化的月水文模型,利用实测径流资料对模型在时空尺度上进行验证.利用全球气候模型(GCMs)预测的未来气候变化情形,对处于湿润区的沅江流域径流过程进行预测.分析结果表明,该区域径流过程对降雨和气温变化十分敏感.根据英国Hadcm2模型对本世纪中叶气候变化预测结果,沅江流域未来年降雨量减少0.43%气温升高1.55℃,丰水期降雨增加,而枯水期将有较大幅度减少.年径流量相应减少6.8%,丰水期径流量增大11%,枯水期径流减少47%,不利于防洪和水资源开发利用.  相似文献   

6.
洞庭湖流域气候变化特征(1961-2003年)   总被引:6,自引:0,他引:6  
以22个气象站1961-2003年的气象观测数据为基础,对洞庭湖流域的气温、降水和参照蒸散量进行趋势与突变分析.从1970年开始,洞庭湖流域经历了一个缓慢而稳定的增温过程,1990s发生突变进入快速增温时期;尤其是是在春、冬季节,这种突变式的增温特征非常显著;秋季持续而稳定增温,而夏季气温并无明显变化.进入1990s,洞庭湖流域降水有明显增多,尤其是夏季降水突变式增加;与此同时,夏季暴雨频率也突变式增大,但是暴雨强度并无明显变化.1900s迄今,参照蒸散量持续而稳定的减少,夏季减少量尤为显著.全球变暖的区域响应,驱动洞庭湖流域水循环速度加快,夏季降水增多,而蒸发能力减弱,这是1990s洞庭湖流域洪水频发的主要气候因子.  相似文献   

7.
气候背景下冰川在博斯腾湖水量平衡中的作用   总被引:3,自引:1,他引:2  
孙占东  王润 《湖泊科学》2006,18(5):484-489
基于博斯腾湖水量平衡关系,对博斯腾湖水量变化做了分析,认为博斯腾湖近年水位的显著变化与占其入湖水量85%的开都河流量变化有直接关系.冰川作为开都河上游重要的水资源形势,造就了开都河稳定的基流.部分冰川在近20年全球和区域气候变化影响下发生了较大退缩,消退的冰雪直接补给了开都河径流,对开都河连年丰水起了重要作用.随着相对海拔较低的中小冰川的退缩,冰益变薄雪线升高,冰雪储量减少,冰川对气温升高的敏感性开始降低,融水补给量可能随之减少,气候变暖所带来的融水补给效应将减弱,最终影响到博斯腾湖的入流补给.  相似文献   

8.
近40a来新疆地区冰雪径流对气候变暖的响应   总被引:10,自引:4,他引:6  
分析了新疆地区 33条主要河流出山口水文站 5 0~ 80年代的径流资料和 84个气象台站气温和降水资料 ,以 1 980年为界 ,通过对比前后两时段的水文气象特征的变化结果 ,表明尽管 80年代以来 ,春季气温升高并不十分明显 ,但大多数河流春季径流却明显增加 ,平均增加约 1 0 % ;特别是山区融雪最盛的 5月份 ,径流增加最为显著 ,平均增加 2 0 % .与此相反 ,6月份径流普遍减少 ,平均减少约 5 % .从全年及整个夏季情况看 ,径流变化与流域冰川覆盖率没有直接的响应关系 ,但在冰川消融最强烈的 8月份 ,径流的变化与冰川覆盖率存在有明显的正相关关系 ,反映出气候变暖引起冰川径流增加的趋势  相似文献   

9.
博斯腾湖水盐动态变化(1951-2011年)及对气候变化的响应   总被引:5,自引:1,他引:4  
分析了1951-2011年博斯腾湖历史水位和湖水矿化度的动态变化特征,解析了博斯腾湖水量与水质对气候变化的响应及未来变化趋势.结果表明,博斯腾湖水位在60年内经历了两个突变时期,突变时间分别为1974年和1994年,湖水矿化度也相应地呈现了三个动态变化阶段,水量与水位呈极显著负相关,但水质变化滞后于水位变化1年;流域气温呈显著增加趋势,气温升高的突变时间为1993年,与开都河出山口径流突变时间一致,但降水变化不显著;1993年前,博斯腾湖水量主要受气温和人类活动双重影响,1993年后博斯腾湖水量主要受气温的显著影响,气温主要通过改变入湖水量及湖区蒸发损耗来调控湖泊水位和水质;未来气温持续升高情景下,博斯腾湖水位将面临降低趋势,水质也将有恶化趋势.因此,为合理开发利用博斯腾湖水资源,减少水资源无效损耗,抑制水质恶化趋势,确保流域可持续发展,建议将博斯腾湖调水时间集中在5-9月,并严格控制孔雀河流域工农业用水量及工农业、生活污染源,减少污水排放量,减少周边地下水开发量.  相似文献   

10.
气候变化和人类活动对流域径流影响的定量研究是当前研究的热点,赣江作为鄱阳湖流域最大的子流域,径流变化对鄱阳湖湿地水生态系统具有重要的影响.利用Mann-Kendall突变检验分析了赣江流域径流1955—2010年间演变趋势,再分别应用统计方法和IHACRES集总式模型分析气候要素和人类活动对径流的影响.研究表明IHACRES能够较好地模拟赣江流域径流,适用于中亚热带湿润季风气候区.Mann-Kendall突变检验表明赣江流域径流在1979年发生突变,可划分为1955—1979年和1980—2010年两个时段.降水是影响赣江流域径流年际变化的主要因素,而土地利用等人类活动的影响并不明显.水库建设显著影响赣江径流的季节分配,1980—2010年间人类活动影响更加显著,其中45%的年份秋季径流增加50%以上,26%的年份秋季径流增加超过100%,其中1989年的秋季径流增加幅度达到320%.  相似文献   

11.
Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and stream-flow was detected, and the possible association between the El Nino/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the 1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and  相似文献   

12.
This paper presents preliminary results from an analysis of hydrological variability of a catchment located in Galicia (NW Spain), with particular focus on the effects of climate variability (temperature and precipitation), using daily streamflow data for the period October 2004 to September 2009. The climate variability has been studied by means of data obtained in a meteorological station on the area. The analysis is based on the examination of statistical parameters, flow duration characteristics, baseflow separation and the relationship between measured streamflow and precipitation. The results show that daily, monthly and annual streamflow are highly variable in this catchment. At seasonal scale about 65% of the water flows in winter (33%) and spring (32%) months, although with significant differences between years. This seasonality essentially relates to distribution and characteristics of precipitation episodes. However, there is not a narrow relationship between precipitation and streamflow, because soil moisture conditions have an important role in the hydrological behaviour of the catchment. The baseflow contribution to total streamflow is quite high, with baseflow index values above 0.69, which is consistent with the characteristics of the study area, such as geology (dominated by schist), soils (Umbrisols and Cambisols), vegetation cover (over 65% forest area) and precipitation characteristics (heavy, long duration and low intensity). The flow duration analysis also reveals that the flow regime is dominated by baseflow, recording high flow peaks during a limited period of the year. The study reveals that the major cause of streamflow variability in this catchment is related to precipitation distribution and soil moisture conditions. The results suggest that the Corbeira stream undergoes a reduction in low streamflows and an increase in the frequency of high flows, hence producing an increase in the risks associated with these changes.  相似文献   

13.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

15.
量化气候变化和人类活动对流域水文影响及其对流域水资源规划和管理具有重要的理论与现实意义.采用水文模型和多元回归法定量分析气候变化和人类活动对鄱阳湖"五河"径流的影响,并通过与灵敏度分析法对比来进一步验证分析结果 .研究表明,1970-2009年,气候变化和人类活动对鄱阳湖流域径流增加的贡献率分别为73%和27%.气候变化是饶河、信江和赣江径流增加的主导因素,而人类活动是修水径流增加的主要因素,是抚河径流减少的主要原因.另外,不同季节影响径流变化的主导因素又有不同,人类活动为干季(11月到次年2月)径流增加和湿季(4-6月)径流减小的主导因素,其贡献率分别为78.9%和82.7%.本研究可为鄱阳湖流域防洪抗旱及水资源优化配置提供重要科学依据.  相似文献   

16.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

17.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

Based on a future temperature increase of 0.5°C and precipitation decrease of 25%, the climate elasticity of streamflow to precipitation and temperature changes in 12 Andean watersheds of the Coquimbo Region, north-central Chile, was assessed. Also, the possible relationships between this elasticity and specific physiographic characteristics of the watersheds (area, average elevation, slope distribution, terrain roughness, slope orientation, vegetation cover) were studied. Climate elasticity of streamflow ranged between 0 and 2.8. Watersheds presenting higher elevations, with a fairly well-balanced distribution of slope exposure tend to exhibit lower elasticity, which could be explained by the contribution of snowfall to the hydrological regime, more significant in those watersheds. Results should be considered when downscaling climate model projections at the basin scale in mountain settings. Finally, uncertainties in the approach, given by factors such as streamflow seasonality, data availability and representativeness and watershed characteristics, and therefore the scope of the results, are discussed.  相似文献   

19.
Understanding climate change impacts on hydrological regime and assessing future water supplies are essential to effective water resources management and planning, which is particularly true for the Tibetan Plateau (TP), one of the most vulnerable areas to climate change. In this study, future climate change in the TP was projected for 2041–2060 by a high‐resolution regional climate model, RegCM4, under 3 representative concentration pathways (RCPs): 2.6, 4.5, and 8.5. Response of all key hydrological elements, that is, evapotranspiration, surface run‐off, baseflow, and snowmelt, to future climate in 2 typical catchments, the source regions of Yellow and Yangtze rivers, was further investigated by the variable infiltration capacity microscale hydrological model incorporated with a 2‐layer energy balance snow model and a frozen soil/permafrost algorithm at a 0.25°×0.25° spatial scale. The results reveal that (a) spatial patterns of precipitation and temperature from RegCM4 agree fairly well with the data from China Meteorological Forcing Dataset, indicating that RegCM4 well reproduces historical climatic information and thus is reliable to support future projection; (b) precipitation increase by 0–70% and temperature rise by 1–4 °C would occur in the TP under 3 RCPs. A clear south‐eastern–north‐western spatial increasing gradient in precipitation would be seen. Besides, under RCP8.5, the peak increase in temperature would approach to 4 °C in spring and autumn in the east of the TP; (c) evapotranspiration would increase by 10–60% in 2 source regions due to the temperature rise, surface run‐off and baseflow in higher elevation region would experience larger increase dominantly due to the precipitation increase, and streamflow would display general increases by more than 3% and 5% in the source regions of Yellow and Yangtze rivers, respectively; (d) snowmelt contributes 11.1% and 16.2% to total run‐off in the source regions of Yellow and Yangtze rivers, respectively, during the baseline period. In the source region of Yangtze River, snowmelt run‐off would become more important with increase of 17.5% and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5.  相似文献   

20.
The processes by which climate change affects streamflow in alpine river basins are not entirely understood. This study evaluated the impacts of temperature and precipitation changes on runoff and streamflow using glacier‐enhanced Soil and Water Assessment Tool model. The study used observed and detrended historical meteorological data for recent decades (1961–2005) to analyse individual and combined effects of temperature and precipitation changes on snow and glacier melts and discharges in the Sary‐Djaz‐Kumaric River Basin (SRB), Tianshan Mountains. The results showed a 1.3% increase in annual snowmelt in the basin, mainly because of an increase in precipitation. Snowmelt in the basin varied seasonally, increasing from April through May because of increasing precipitation and decreasing from July through September because of rising temperature. Glacier melt increased by 5.4%, 5.0% of which was due to rising temperature and only 0.4% due to increasing precipitation. Annual streamflow increased by 4.4%, of which temperature and precipitation increases accounted for 2.5% and 1.9%, respectively. The impacts of temperature and precipitation changes on streamflow were especially significant after 1980 and even more so in September. Glacier melt, due to temperature rise, was the dominant driver of increasing streamflow in the glacier‐dominated SRB, Tianshan Mountains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号