首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron spin resonance (ESR) dating method was employed on quartz phenocrysts separated from pumice of the El Cajete and Battleship Rock Members of the Valles Rhyolite in the Valles caldera, New Mexico. The results of heating experiments indicate that Ti impurity centers have two components; a thermally stable one and a less stable, temperature sensitive one. ESR dates using the stable Ti center yield eruption ages of 59 ± 6 ka for the Battleship Rock Member and 53 ± 6 ka for the El Cajete Member while recent 14C dates (S. Reneau and J. Gardner, unpub. data) from carbonized logs in the El Cajete pumice indicate that its age is older than 50 ka. Our results indicate that volcanism in the Valles caldera is much younger than previously thought (≥ 130 ka) and that recent revisions to the post-0.5 Ma stratigraphy of Valles caldera are probably in error. The results suggest that ESR dating of quartz may be a useful method for obtaining ages of units in other Quaternary volcanic areas.  相似文献   

2.
Continental Scientific Drilling Program (CSDP) drill hole VC-2B [total depth 1761.7 m (5780 ft); maximum temperature 295 °C] was continuously cored through the Sulphur Springs hydrothermal system in the western ring-fracture zone of the 1.14 Ma Valles caldera. Among other units, the hole penetrated 760.2 m (2494.1 ft) of Paleozoic carbonate and siliciclastic strata underlying caldera fill and precaldera volcanic and epiclastic rocks. Comparison of the VC-2B Paleozoic rocks with corresponding lithologies within and around the 32.1 Ma Socorro caldera, 192 km ( 119 miles) to the south-southwest, provides insight into the variability of alteration responses to similar caldera-related hydrothermal regimes.The Pennsylvanian Madera Limestone and Sandia Formation from VC-2B preserve many of the sedimentological and diagenetic features observed in these units on a regional basis and where unaffected by high temperatures or hydrothermal activity. Micrites in these formations in VC-2B are generally altered and mineralized only where fractured or brecciated, that is, where hydrothermal solutions could invade carbonate rocks which were otherwise essentially impermeable. Alteration intensity (and correspondingly inferred paleopermeability) is only slightly higher in carbonate packstones and grainstones, low to intermediate in siltstones and claystones, and high in poorly cemented sandstones. Hydrothermal fracture-filling phases in these rocks comprise sericite (and phengite), chlorite, allanite, apatite, an unidentified zeolite and sphene in various combinations, locally with sphalerite, galena, pyrite and chalcopyrite. Terrigenous feldspars and clays are commonly altered to chlorite and seriate, and euhedral anhydrite “porphyroblasts” with minor chlorite occur in Sandia Formation siltstone. Fossils are typically unaltered, but the walls of some colonial bryozoans in the Madera Limestone are altered to the assemblage chlorite-sericite-epidote-allanite. La, Ce and Nd are present in an unidentified hydrothermal mineral occurring throughout much of the VC-2B Pennsylvanian sequence.Carboniferous carbonate and siliciclastic formations within and around the Socorro caldera show a similar style of alteration and mineralization to their Valles caldera counterparts, but by contrast locally host commercial, caldera-related, base-metal sulfide deposits. As in the Valles rocks, mineralization and alteration in those of the Socorro caldera were strongly controlled by porosity. Unless disrupted by fractures, breccias, or karst cavities ( not identified in Valles caldera drill holes), the rocks remained relatively unaltered. Where these features allowed ingress of mineralizing hydrothermal solutions, base-metal sulfides and rare-earth-element-bearing minerals were precipitated.  相似文献   

3.
Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite–clinoptilolite–mordenite–silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow “caldera-type zeolitization” as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to “caldera-type zeolitization.” Resource Geol. Spec. Issue No. 20, 129–140]. Geology and 40Ar/39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (≤ 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.  相似文献   

4.
Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 × 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ± 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system.  相似文献   

5.
Nevados de Chillán Volcanic Complex, central Chile, has been active for at least 640 ka—a period spanning a number of glacial and interglacial periods. Geologic mapping, radiometric dating and geochemical analysis have identified six new volcanic units and produced four new 40Ar/39Ar ages for Cerro Blanco, the northern subcomplex of Nevados de Chillán volcano. Compositions range from dacite to basaltic-andesite and a new geologic map is presented. Examination of lava fracture structures on both newly mapped lavas and those mapped during previous studies has enabled interpretations of former eruptive environments. Palaeoenvironment reconstructions, combined with 40Ar/39Ar ages and comparison with the marine oxygen isotope record, show that at least three phases of volcanic activity have occurred during the evolution of Cerro Blanco: (1) a constructive, pre-caldera collapse period; (2) a period of caldera formation and collapse; and (3) a constructive period of dome growth forming the modern day volcanic centre. This style of volcanic evolution, whereby large-scale caldera collapse is followed by growth of a new stratocone is common at Andean volcanoes.  相似文献   

6.
40Ar/39Ar dating results on seven volcanic rocks from four areas of the Deccan Traps, India, suggest that volcanic activity more than 70 Ma ago might have occurred at least in limited areas.In the Igat Puri area, the uppermost flow shows an40Ar/39Ar age of 63 Ma, whereas a lower flow has an age of around 82–84 Ma.40Ar/39Ar ages of samples from the Bombay area also seem to favor the occurrence of volcanic activity more than 70 Ma ago. One rhyolite dyke from the Osam Hill in the Girnar Hill area shows a well-defined plateau age of 68 Ma, whereas two tholeiitic basalts from the Mahabaleshwar area indicate a total40Ar/39Ar age of around 63–64 Ma, though they show the effect of secondary disturbance in the age spectra.The volcanic activity(ies) more than 70 Ma ago may correspond to precursory one(s) for the main volcanic activity around 65 Ma ago in the Deccan Traps.  相似文献   

7.
The Jemez Mountains volcanic field (JMVF), located in north-central New Mexico, has been a site of basaltic to rhyolitic volcanism since the mid-Miocene with major caldera forming eruptions occurring in the Pleistocene. Eruption of the upper Bandelier Tuff (UBT) is associated with collapse of the Valles Caldera, whereas eruption of the lower Bandelier Tuff (LBT) resulted in formation of the Toledo Caldera. These events were previously dated by K-Ar at 1.12 ± 0.03 Ma and 1.45 ± 0.06 Ma, respectively. Pre-Bandelier explosive eruptions produced the San Diego Canyon (SDC) ignimbrites. SDC ignimbrite “B” has been dated at 2.84 ± 0.07 Ma, whereas SDC ignimbrite “A”, which underlies “B”, has been dated at 3.64 ± 1.64 Ma. Both of these dates are based on single K-Ar analyses.40Ar/39Ar dating of single sanidine crystals from these units indicates revision of the previously reported dates. Isochron analysis of 26 crystals from the UBT gives a common trapped 40Ar/36Ar component of 304.5, indicating the presence of excess 40Ar in this unit, and defines an age of 1.14 ± 0.02 Ma. Isochron analysis of 26 crystals from the LBT indicates an atmospheric trapped component and an age of 1.51 ± 0.03 Ma. An age of 1.78 ± 0.04 Ma, based on the weighted mean of 5 individual analyses, is indicated for SDC ignimbrite “B”, whereas 3 analyses from SDC ignimbrite “A” give a weighted mean age of 1.78 ± 0.07 Ma. Evidence for xenocrystic contamination in the SDC ignimbrites comes from analyses of a correlative air-fall pumice unit in the Puye Formation alluvial fan giving ages of 1.75 ± 0.08 and 3.50 ± 0.09 Ma. The presence of xenocrysts in bulk separates used for the original K-Ar analyses could account for the significantly older ages reported.Geochemical data indicate that SDC ignimbrites are early eruptions from the magma chamber which evolved to produce the LBT, as compositions of SDC ignimbrite “B” are virtually identical to least evolved LBT samples. Differentiation during the 270-ka interval between eruption of SDC ignimbrite “B” and the LBT produced an array of high-silica rhyolite compositions which were erupted to form the LBT. Mixed pumices associated with eruption of the LBT indicated an influx of more mafic magma into the system which produced shifts in some incompatible trace-element ratios. Lavas and tephras of the Cerro Toledo Rhyolite record the geochemical evolution of the Bandelier magma system during the 370-ka interval between eruption of the LBT and the UBT.The combined geochronologic and geochemical data place the establishment and evolution of the Bandelier silicic magma system within a precise temporal framework, beginning with eruption of the SDC ignimbrites at 1.78 Ma, and define a periodicity of 270–370 ka to ash-flow eruptions in the JMVF. These intervals are comparable to those in other multicyclic caldera complexes and are a measure of the timescales over which substantial fractionation of large silicic magma bodies occur.  相似文献   

8.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

9.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

10.
The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr?=?0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr?=?0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.  相似文献   

11.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

12.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

13.
Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K–Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes–Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes–Serra Branca–Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.  相似文献   

14.
A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 × 14 km) has been mapped out by measuring δ 18O values of 300 rock and mineral samples. δ 18O varies systematically throughout the caldera, reaching values as low as −2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the surface down to a depth of more than 2000 m. The initial δ 18O value of the caldera-fill Sunshine Peak Tuff was very uniform (+7.2 ± 0.1), making it easy to determine the exact amount of 18O depletion experienced by each sample during hydrothermal alteration. Also, we have excellent stratigraphic control on depths beneath the mid-Tertiary surface, quantitative information on mineralogical alteration products, and accurate data on the shape of the central resurgent intrusion, which was the principal ‘heat engine’ that drove the hydrothermal circulation. Major conclusions are: (1) Although pristine mid-Tertiary meteoric waters in this area had δ 18O −14, these fluids were 18O-shifted upward to about δ18O = −8 to −5 prior to entering the shallow convective system associated with the resurgent intrusive rocks. Although there was undoubtedly radial inflow toward the caldera from all directions, the highly fractured Eureka Graben, southwest of the caldera, was probably the principal source of recharge groundwater for the Lake City system. (2) Fluid flow within the caldera was dominated by three major categories of permeable zones: the porous megabreccia units (which dip outward from the resurgent dome), vertical fractures and faults related to resurgence, and the caldera ring fault itself. All of these zones exhibit marked 18O depletions, and they are also typically intensely mineralogically altered. (3) The resurgent intrusive stock and its contact metamorphic aureole of hornfels both experienced water/rock ratios lower than the permeable zones; however, they have similarly low δ 18O values because they were altered at higher temperatures. (4) Throughout the caldera, the δ 18O of Sunshine Peak Tuff decreases with increasing depth (about 6 per mil/km), indicative of a shallow thermal gradient, typical of a convective hydrothermal system. The near-surface portion of this gradient was controlled by the temperature drop associated with boiling in the uprising fluid. (5) Deeply circulating meteoric water rose along permeable ring fractures 3 to 5 km beneath the mid-Tertiary surface. These fluids were drawn into the shallow convective system through the lower, porous, megabreccia units. Near the resurgent intrusions, fluid flow was again directed upward where resurgence-related, near-vertical fractures intersect the megabreccia units.  相似文献   

15.
Whole-rock oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active geothermal systems within the caldera. The deep Clay Pit-1 and Mammoth-1 wells on the resurgent dome penetrate mildly to strongly altered Bishop Tuff with δ18OWR values as low as −2.6% (vs V-SMOW). The idfu 44-16 well intercepts a thinner Bishop Tuff section with δ18OWR values of +0.4 to +2.3%. in the western caldera moat, where milder and more sporadic 18O depletions occur in Tertiary volcanic rocks of the western caldera floor (δ18OWR = +2.2 to +6.4‰). Bishop Tuff samples from deeper parts of the 715 m rdo-8 (Shady Rest) well in the SW moat are also strongly depleted in 18O (δ18OWR = −1.5 to +0.6‰). Four shallow thermal gradient wells (469–715 m td drilled in the western moat did not penetrate Bishop Tuff, but Early Rhyolites from two of these holes are depleted in 18O (δ18OWR = −1.2 to +6.0‰ inplv-1 +4.6 to +5.3%. inmlgrap-1), compared to lithologic equivalents from the other two holes (δ18OWR = +6.3 to +8.0‰ inplv-2 andmlgrap-2).Whole-rock oxygen isotope profiles for the resurgent dome wells are unlike profiles calculated assuming alkali feldspar-H2O fractionation behavior and total O-isotopic equilibration with −14.3‰ fluids at measured temperatures. The sense of this divergence implies an earlier hydrothermal episode within the central caldera driven by one or more shallow intrusions. Geochemical similarities between an intrusive granophyre at the bottom of the Clay Pit-1 well and a nearby Moat Rhyolite dome with a K/Ar cooling age of 0.5 Ma suggest that vigorous hydrothermal activity beneath the central resurgent dome may have occurred as much as 0.5 m.y. ago. Calculated and measured O-isotope profiles are similar for deep wells that penetrate the western moat of the caldera, where steep temperature gradients and low δ18OWR values in Early Rhyolites from plv-1 are attributed to an active hydrothermal aquifer that has descended slightly from earlier, shallower elevations. Similarly, severe 18O depletions in Bishop Tuff samples from the idfu 44-16 and rdo-8 wells reflect active convection beneath the western moat, whereas milder 18O depletions in Early Rhyolites from mlgrap-1 were apparently caused by hydrothermal alteration at lower temperatures. The O-isotope profiles imply that surface discharge within and around the resurgent dome results from shallow, eastward-directed outflow from a zone of higher enthalpy hydrothermal upflow beneath the western caldera moat. Intrusive magmatic heat source(s) are inferred to exist beneath the western moat, perhaps beneath Mammoth Mountain.  相似文献   

16.
Zhao  Xinwei  Zhou  Jing  Ma  Fang  Ji  Jianqing  Deino  Alan 《中国科学:地球科学(英文版)》2020,63(5):662-673
Reconstruction of Quaternary environments, late Cenozoic geodynamics and evaluation of volcanic hazards, all depend on the precise delineation of eruptive stages. In recent years, laser ~(40)Ar/~(39)Ar dating methods have been widely used for dating young volcanic rocks, given their stable automated testing process, very low background level and high sensitivity, which meet the requirements for precise dating of young samples. This paper applied high-precision laser ~(40)Ar/~(39)Ar dating to the main volcanic units in the Tengchong area and obtained ages in the range of 0.025–5.1 Ma using conventional data processing methods. However, conventional dating highlighted issues related to very low radiogenic ~(40)Ar content, accidental errors and poor data stability, which led to huge age deviations. Moreover, lacking a unified timescale, conventional methods were unable to strictly define the stages of the Tengchong volcanic eruptions, leading to ongoing controversy. In this study, we applied a Gaussian mathematical model to deal with all 378 original ages from 13 samples. An apparent age-probability diagram,consisting of three independent waveforms, have been obtained. The corresponding isochron ages of these three waveforms suggest there were three volcanic eruptive stages, namely during the Pliocene(3.78±0.04 Ma), early Middle Pleistocene(0.63±0.03 Ma) and late Middle Pleistocene to early Late Pleistocene(0.139±0.005 Ma). These results accurately define eruptive stages in the Tengchong area.  相似文献   

17.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

18.
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko¯ko Seamounts, the new data indicate that the best age for the bend is 42.0 ± 1.4 m.y.Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain.40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of39Ar from nonretentive montmorillonite clays that have also lost40Ar.  相似文献   

19.
Four 40Ar/39Ar dates on mineral separates from fresh and hydrothermally altered volcanic and plutonic rocks from the Ngatamariki geothermal field indicate that andesitic volcanism took place in the eastern portion of the Taupo Volcanic Zone (TVZ) prior to 1.2 Ma and probably considerably earlier. These data significantly extend the onset and duration of andesitic volcanism in the east-central TVZ over previous estimates. Intrusive activity is represented at Ngatamariki by a dioritic pluton, the only such pluton yet recognized in the entire TVZ. Hornblende from the pluton yields a crystallization age of near 550 ka. Hydrothermal alteration spatially associated with the pluton produced sericite of a similar age. Overlying and postdating the most intense hydrothermal alteration zone is the Whakamaru Ignimbrite (or its equivalent) which was emplaced at 330 ka. Two distinct geothermal systems may have been active at nearly the same site from 550 ka to present. The most intense activity occurred before 330 ka and was associated with emplacement of the Ngatamariki diorite. This was followed by the less intense system that is currently active. The geothermal regime at Ngatamariki has, therefore, probably been active intermittently for at least 550 ka.  相似文献   

20.
The Early Andean Magmatic Province (EAMP), consists of about 150 000 km3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown.Thirty 40Ar/39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30′–24°S). Reliable plateau and “mini plateau” ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N–S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153–150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175–170 Ma in the Iquique area, although no plateau age could be obtained.The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions.The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号