首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

A total of 14 vertical electrical soundings using Schlumberger electrode configuration and the complementary laboratory analysis of aquifer samples were carried out in the Abak Local Government Area of Akwa Ibom State, the coastal region of Nigeria. The study focused on the estimation of geohydrodynamic parameters of the frequently exploited aquifers and the implication of hydrodynamic parameters on the lithostratigraphy and the anticipated exposure of the assessed geologic formation at the shorelines. These parameters were porosity (?), tortuosity (τ), formation factor (F), aquifer water formation resistivity (Rw) and coefficient of permeability/hydraulic conductivity (K). Computation of the effective porosities from the aquifer cuttings was carried out using wet weight–dry weight technique and petrophysical techniques. The F values were computed using the aquifer formation bulk resistivity measured from field 1-D resistivity data analysis, whose interpretation was constrained by nearby borehole information. The formation pore water resistivities were estimated from the laboratory using electrical resistivity metre. The Win RESIST software program was used in interpreting the field data electronically. The results of interpretation gave the primary parameters of saturated and unsaturated units of the coastal regions used in this work. The area generally shows seemingly high porosity with high coefficient of permeability. The primary and secondary parameters have been contoured to model their distributions. Besides, some functional relations have been realized through regression analyses. The contour distribution of the geohydrodynamic parameters indicates the vulnerability of the water repositories to contaminations as well as the vulnerability of the shoreline to waterborne erosion. The seemingly high effective porosity in the compliant laboratory and calculated values indicate that the coastal region is neither lithified nor compacted/consolidated. This signals the possibility of the formation to be easily eroded, weathered or flooded where these units are exposed to water current. With these revelations, the shorelines could be properly managed and conserved by geotechnically reinforcing with hard and water-resistant concrete that can protect the vulnerable and erosion-prone porous sediments.

  相似文献   

2.
Interrelated, biotic (flora and fauna) and abiotic (pedogenesis and hydrology) processes were examined at four sites (30, and approximately 1000–3000, 7000–12 000, and 125 000 years before present) in the northern Mojave Desert. Data collected at each included floral and faunal surveys; soil texture, structure, and morphology; and soil hydraulic properties. Separate measurements were made in shrub undercanopy and intercanopy microsites. At all sites, shrubs made up greater than 86 percent of total perennial cover, being least on the youngest site (4 percent) and most on the 7000–12 000-year-old site (31 percent). In the intercanopy, winter annual density was highest on the 1000- to 3000-year-old site (249 plants/m2) and lowest on the oldest site (4 plants/m2). Faunal activity, measured by burrow density, was highest on the 1000–3000- and 7000–12 000-year-old sites (0.21 burrows/m2) and density was twice as high in the undercanopy versus the intercanopy. Burrow density was lower at the two oldest sites, although density was not statistically greater in the undercanopy than intercanopy. At the older sites, the soil water balance was increasingly controlled by Av horizons in intercanopy soils in which saturated hydraulic conductivity (Ksat) decreased 95 percent from the youngest to the oldest site. No significant reduction in Ksat in undercanopy soils was observed. Decreases in the intercanopy sites correlated with decreases in annual plant density and bioturbation, suggesting these processes are interrelated with surface age.  相似文献   

3.
Multi-Level Slug Tests to Measure 3-D Hydraulic Conductivity Distributions   总被引:1,自引:0,他引:1  
The accurate determination of the transport and fate of pollutants through an aquifer begins with a complete understanding of the complexities of the hydraulic conductivity in that aquifer. Slug tests have been a popular method to define in situ hydraulic conductivity in an aquifer. However, traditional slug tests will provide information about the hydraulic conductivity across the entire screened interval of a well and not provide information about variations that may exist in the vertical direction. Equipment was developed that allowed multi-level slug tests to be conducted at discrete intervals within fully screened 5-cm (2 in) diameter wells. Ten such wells at the Geohydrologic and Experiment Monitoring Site were tested in order to provide a more complete spatial definition of the hydraulic conductivity and to determine the utility of the double-packer apparatus for such studies. Results from multi-level slug tests produced vertical profiles of hydraulic conductivity throughout each well’s screened interval. These vertical profiles provided information about spatial variations in hydraulic conductivity, when they were incorporated into cross-sections and a 3-D fence diagram. This research determined the greatest complexity in hydraulic conductivity in a northeast to southwest trend across the study site. Techniques presented here are valuable tools for greater definition of the hydraulic conductivity distribution in similar hydraulic settings.  相似文献   

4.

A thorough study on understanding of groundwater recharge sources and mechanisms was attempted by integrating the hydrogeological, geochemical and isotopic information along with groundwater dating and end-member mixing analysis (EMMA). This study was necessitated due to prolonged dryness and unavailability of freshwater in semi arid Deccan trap regions of Central India. In addition, groundwater resources are not characterized well in terms of their geochemical nature and recharge sources. The hydrogeochemical inferences suggest that aquifer I consists of recently recharged water dominated by Ca–Mg–HCO3 facies, while groundwater in aquifer II shows water–rock interaction and ion exchange processes. Presence of agricultural contaminant, nitrate, in both aquifers infers limited hydraulic interconnection, which is supported by unconfined to semi-confined nature of aquifers. Groundwater in both aquifers is unsaturated with respect to carbonate and sulfate minerals indicating lesser water–rock interaction and shorter residence time. This inference is corroborated by tritium age of groundwater (aquifer I: 0.7–2 years old and aquifer II: 2–4.2 years old). Stable water isotopes (δ2H, δ18O) suggest that groundwater is a mixture of rainwater and evaporated water (surface water and irrigation return flow). EMMA analysis indicates three groundwater recharge sources with irrigation return flow being the dominant source compared to others (rainwater and surface waters). A conceptual model depicting groundwater chemistry, recharge and dynamics is prepared based on the inferences.

  相似文献   

5.
The distribution of Sarcocornia pillansii (Moss) A.J. Scott was determined by water-table depth and electrical conductivity (EC) of the groundwater. Where the groundwater was accessible (<1.5 m) and had a low EC (<80 mS cm−1), S. pillansii extended its roots down to the water-table where a suitable water potential gradient was shown to exist between the soil and roots. In areas where the groundwater was too deep and/or hypersaline, the plants grew on hummocks. The unconfined aquifer below the floodplain is linked to the estuary and although diurnal tidal waves were dampened, water-table level fluctuations were recorded between tidal events. The complex geomorphology of the floodplain influences groundwater flow, in turn affecting the distribution of the salt marsh vegetation.  相似文献   

6.
Cactus seedlings often establish under nurse plants which modify environmental conditions by increasing moisture and decreasing solar radiation, which may cause beneficial and detrimental effects, respectively, on seedling growth. Three soil moisture treatments (5%, 25% and 60%) and two solar radiation levels (100% exposure=243 μmol m−2 s−1, and 40%=102 μmol m−2 s−1) were used in a factorial design to analyze seedling growth response of three rare cactus species (Mammillaria pectinifera, Obregonia denegrii and Coryphantha werdermannii). The variables evaluated were relative growth rate (RGR), root/shoot ratio (R/S), and K (RGRroots/RGRshoot), obtained from an initial seedling harvest (6-month-old seedlings) and a final harvest 6 months after treatment application. All three species had slow RGRs (0.002–0.012 g g−1 day−1). O. denegrii had the lowest RGR values, but was the only species for which R/S and K varied with soil moisture. While all seedlings responded markedly to soil moisture, no response was observed to radiation treatments. The latter might have been related to the relatively low solar radiation levels present in the greenhouse. Yet, our results suggest that the main benefit nurse plants offer to seedlings is the increase in soil moisture.  相似文献   

7.
To decipher the thermal structure of the sedimentary veneer in southern Israel, new values of thermal conductivity and porosity as well as of the radiogenic heat budget are provided. Thermal conductivity is measured for lithotypes and scaled up for geological formations. The new data are higher than most of the previously measured values, in particular for sandstones and siltstones, whose mean values are 5.0 and 2.9 W m?1 K?1. Mean values of the most abundant lithotypes, which are dolomites and limestones, are on the order of 4.1 and 2.7 W m?1 K?1, respectively. The total radiogenic heat production of the sedimentary cover varies slightly over southern Israel, due to variable lithology and total sediment thickness, yielding a maximum heat flow on the order of 4 mW m?2 where the sedimentary section is thickest (ca. 7 km). A temperature prognosis was made by calculating temperature profiles to the top of the crystalline basement at five well locations applying the new thermal‐conductivity data set and three scenarios of surface heat flow (50, 55 and 60 mW m?2). The calculated temperatures best match with measured drillstem‐test temperatures by using heat‐flow values close to the upper bound of range. Surface heat flow on the order of 55–60 mW m?2 is supported by a reevaluation of an existing temperature log and the application of thermal conductivity from this study. The temperature prediction for southern Israel shows values of 100–120°C at 3500–4500 m depth, indicating a geothermal potential that can be used for heating as well as electricity production.  相似文献   

8.
贾金生  刘昌明 《地理学报》2002,57(2):201-209
自从20世纪60年代大规模开采地下水以来,栾城县的地下水位以每年大约0.65 m的速度下降.降雨量的减少、农业产量的大幅度提高、种植结构的变化以及上游水利工程的修建,都与地下水位的下降有着密切联系.利用Visual Modflow软件,在分析该县水文地质条件与水资源利用的前提下,运用三维地下水流模型,通过有限差分方法对栾城县的地下水系统进行了模拟,结果表明:5个观测孔的地下水位计算值与实测值拟合程度很好,模拟出的地下水流场与实际情况基本一致.利用掌握的水文地质资料,进行参数分区,通过实测资料的校正、调参,模拟出各分区参数值.利用校正后的数学模型,对栾城县地下水对不同开采量的响应进行了计算,结果如下:在现状农业开采量1.01×108m3基础上分别减少14%(0.14×108m3)、29%(0.29×108m3)和增加29%(0.29×108m3)的情况下,到12月份5个观测孔的平均地下水位分别比现状地下水位上升了0.33 m,0.64 m和下降了0.45 m.  相似文献   

9.
Landslide stability analysis increasingly utilises high-resolution coupled hydrology–slope stability models (CHASM) to improve stability assessments in areas subject to dynamic pore pressure regimes. In such environments, the estimation of soil hydraulic conductivity (K) is a key parameter but one which is not always readily available or determined with the required resolution. By using basic soil particle-size distribution (PSD) data, we evaluate the microscopic composition of the actual soil, and applying the analytical relations obtain by a Self-Consistent Method (SCM) approach, we determine an appropriate value of K. This is of importance in that it allows within-soil type variability to be reflected in terms of K and hence within the model structure. The SCM methodology is briefly reviewed and an illustrative application is undertaken for a slope typical of Hong Kong. The results show model output sensitivity in terms of moisture content and factor of safety (FOS) when comparing K values determined using the SCM approach and the conventional field determination. In attempting to determine slope hydrological processes and attendant stability conditions, we conclude that the application of SCM approach offers a novel methodology for potentially improving the parameterisation of hydrology–slope stability models.  相似文献   

10.
We inferred late Pleistocene and early Holocene (24–10 ka BP) environmental conditions in and around Lago Petén Itzá, Guatemala from ostracode remains in the lake sediments. Multivariate statistics were run on autecological information for 29 extant ostracode species collected in 63 aquatic ecosystems on the Yucatán Peninsula along a steep, increasing NW–S precipitation gradient and across a large altitudinal range. Conductivity and water depth are the most important factors that shape ostracode communities. Transfer functions were developed and applied to fossil ostracode assemblages in a ~76-m sediment core (PI-6, ~85 ka) taken in 71 m of water from Lago Petén Itzá, to infer past shifts in conductivity and water level. Results suggest climate was cold and wet during the Last Glacial Maximum (LGM). Alternating dry and wet conditions characterized the deglacial. Early Holocene climate was warmer and wetter. The LGM was characterized by low ostracode species richness (4 spp.) and abundance (<940 valves g−1), dominance of benthic over nektobenthic taxa, abundant Physocypria globula, conductivity as low as 190 μS cm−1, and clay-rich sediments with relatively high total organic carbon and low C/N ratios (<14), suggesting relatively deeper water at the core site associated with abundant precipitation. Greatest water depth at the core site during the LGM occurred late in the period and was ~50 m. The deglacial was characterized by drier conditions, higher ostracode species richness (6 spp.) and abundances up to 18,115 valves g−1, dominance of nektobenthic species, and presence of shallow-water and littoral-zone indicators such as Heterocypris punctata and Strandesia intrepida, conductivity up to 550 μS cm−1, C/N ratios as high as 37, and gypsum deposition. Lowest inferred lake depth at the core site during the deglacial was ~20 m. The early Holocene was characterized by high numbers of ostracode remains, up to 25,500 valves g−1, and the presence of L. opesta and P. globula. Cytheridella ilosvayi was absent from late Pleistocene sediments, suggesting it colonized northern Central America during the Holocene.  相似文献   

11.
The northern coastal part of Korinthia prefecture can be characterized as an agrotourism center that has grown and urbanized rapidly. The area is formed of recent unconsolidated material consisting of sands, pebbles, breccias and fine clay to silty sand deposits. These deposits host the main aquifer system of the area, which depends on groundwater as a water resource. Groundwater is the main source for irrigation in the area. A total water volume of 29.2×106–34.3×106 m3 yr−1 was estimated to recharge the aquifer system from direct infiltration of rainfall, streambed infiltration, irrigation return, artificial recharge via flood irrigation and lateral subsurface inflows. The present annual abstraction ranges between 39.2×106 and 44.6×106 m3 yr−1. Groundwater abstraction in dry years exceeds renewable freshwater resources by more than 38%. Approximately 79% of the total abstraction is consumed for agriculture supply. Water balance in the coastal aquifer system is in disequilibrium; a deficit, which ranges from 4.9×106 to 15.4×106 m3 yr−1 exists. The safe yield of the coastal aquifer system has been estimated at 37.1×106 m3 yr−1 for normal hydrological year and 32×106 m3 yr−1 for severely dry hydrological year. The total abstraction is greater than the recharge and the safe yield of the aquifer. The aquifer system has shown signs of depletion, seawater intrusion and quality contamination. The integrated water resources management, securing water in the future, should include measures that augment groundwater budget in the coastal aquifer of the study area.  相似文献   

12.
Effect of water quality on the leaching of potassium from sandy soil   总被引:1,自引:0,他引:1  
When potassium (K+) fertilizers are applied to soil, K+ is subject to displacement through the soil profile. More generally, the application of K+ fertilizers to sandy soils with low clay content and small buffer capacity, in which K+ does not interact strongly with the soil matrix, results in localized increases in K+ concentration in the soil solution. Losses of K+ depend on the concentration of calcium (Ca2+) as a competing ion in the leaching water and the amount of water that passes through the soil. In this study, we examined the adsorption and movement of applied K+ in columns of sandy soil. Glass tubes, 4.8 cm in diameter and 40 cm in length, were packed with either native soil or Ca2+-saturated soil. The resulting 10-cm-long column of soil had a bulk density of 1.65 g cm−3. Native soil was leached with distilled water and CaCl2 solutions of various concentrations. In the Ca2+-saturated soil, a pulse of K+ was leached with CaCl2 solutions of various concentrations or distilled water. Increasing the CaCl2 concentration from 3 to 15 mm resulted in earlier breakthrough, a higher peak concentration of K+, and greater amounts of leached K+. The breakthrough curve for K+, when leached with distilled water, showed very low concentrations and was more delayed than the other treatments. In Ca2+-saturated soil, the amount of K+ leached increased as Ca2+ concentration increased, with up to 54% of the added pulse K+ being removed from 10 pore volumes (Pv) (387 mm) of 15 mm CaCl2. The presence of Ca2+ in irrigation water and soil minerals able to release Ca2+ is important in determining the amount of K+ leached from soils. Large amounts of K+ are leached from soils in areas where crops are irrigated with water that contains significant concentrations of Ca2+ and other cations.  相似文献   

13.
Selectivity of various types of salt-resistant plants for K over Na   总被引:2,自引:0,他引:2  
Selectivity by whole plants for K+ over Na+ in three types (salt excluding, salt secreting and salt diluting) of salt-resistant plants was investigated. An estimating formula of Selective Absorption (SA) capacity of root systems was derived; the Selective Transport (ST n) capacities between K+ and Na+ by various parts of the three types of plants were compared. The results showed that the SA value of salt-excluding plants were higher than that of salt-secreting and salt-diluting plants, the ST1 (root:stem) value was much higher, indicating that both the capacity of selective absorption and the capacity of selective transport by root systems were strong. In salt-secreting plants, the SA value lay between salt-diluting and salt-excluding plants, while the ST1 value was the lowest, indicating that the majority of Na+ uptake by root systems was transported up to their aerial parts and then the surplus salt was secreted in salt glands. In salt-diluting plants, the SA value was the lowest, indicating that the majority of Na+ taken up by the root systems entered into plant body perhaps to satisfy the requirements for osmotic adjustment and growth, and the ST1 value lay between salt-secreting and salt-excluding plants. These data strongly indicate that the SA and ST1 values reflect the K+ and Na+ selectivity characteristics of salt-resistant plants. Therefore, the various types of salt-resistant plants would be classified by using the values of SA and ST1. We suggest that this provides a way for distinguishing various types of salt-resistant plants. Comparing the ST n values of the six species in our paper, we concluded that the selectivity of transporting K+ over Na+ into the actively photosynthesizing organs and particularly into the developing ears is extremely high. Our conclusion is in accordance with previous results that demonstrate that the capacities of selective transport by different parts of the plant for K+ over Na+ are best quantified by ST n values. The necessity, feasibility and wide-ranging applicability of the formulas for estimating SA and ST n values have been discussed in detail.  相似文献   

14.
A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH)3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn2+ and Fe2+ under suboxic condition and very close to the FeS/Fe2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.  相似文献   

15.
盐角草(Salicornia europaea)对NaCl处理的生理响应   总被引:1,自引:0,他引:1  
用含有NaCl的Hoagland培养液处理盐角草(Salicornia europaea)11d。检测其鲜重,干重,离子含量,电导率,溶解性总固体(TDS)含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)浓度。结果表明:随着NaCl浓度的增加,盐角草干重和鲜重呈现先上升后下降的趋势,相对电导率、TDS、SOD、POD、CAT及MDA均呈现先下降后上升的趋势,在NaCl溶液浓度为200mmol·L-1左右时,干重和鲜重的值达到最大,电导率、TDS、SOD、POD、CAT、MDA含量达到最小值;500mmol·L-1和800mmol·L-1时,SOD和CAT活性下降,电导率、TDS、POD、MDA含量则急剧上升。由此说明,一定浓度的NaCl溶液促进了盐角草的生长,200mmol·L-1左右是其生长的最适浓度,500mmol·L-1和800mmol·L-1高盐浓度会对盐角草的膜结构、酶系统等造成不同程度的损伤。盐角草主要将Na+、K+积累在地上部,且随着NaCl处理浓度的增大,Na+含量逐渐增加、K+含量逐渐降低,这可能是盐角草调节细胞内离子平衡对抗盐胁迫的一种适应策略。  相似文献   

16.

Principal components analysis of fracture trace and sinkhole characteristics near 33 wells drawing water from the Ocala aquifer identified three hydrogeologically significant components. Multiple regression analysis using these components as independent variables showed that the flow of water to a well bore is influenced in order of importance by (1) proximity to a zone of high secondary permeability; (2) average aquifer transmissivity near the well; and (3) degree of cavity development in the closest zone of high secondary permeability.  相似文献   

17.
Through field rainfall simulation experiments in an upland mountainous watershed of northern Thailand, we have identified two phenomena that increase the potential for Horton overland flow (HOF) generation on agricultural lands. First, there appears to be a transition period of 12–18 months, extending from the time of abandonment until the formation of a dense vegetation layer capable of intercepting rainfall and ponding surface water, during which HOF generation is accelerated. Simulation data indicate these recently abandoned fields may have runoff coefficients (ROCs) as high as 40% during large seasonal storms with wet antecedent soil moisture conditions. In comparison, actively cultivated lands and advanced (>16–18 months) fallow fields, the land surfaces existing before and after the threshold period, have ROCs≤4%. Secondly, compacted path surfaces initiate HOF within agricultural fields, which have saturated hydraulic conductivity (Ks) values that are 100–200 mm h−1 higher. In the study area, path/furrow networks, comprising 8–24% of field surface areas, are designed to provide walking access within fields and channel excess surface flow from the fields. Compared with hoed surfaces, path/furrows reduce the time to HOF generation by about 85% and have ROCs that are six times higher. Access paths have the lowest Ks values of all watershed surfaces, but conveyance efficiency of HOF generated on these surfaces is low. Even recently created field paths are capable of reducing runoff generation time by 40–90% and producing sixfold increases in ROCs. Collectively, the data suggest that agricultural erosion rates are accelerated during the 12–18-month threshold period following abandonment and during storms where path-generated HOF interacts with adjacent planting surfaces. Despite having periods of increased HOF generation, the total HOF contribution from agricultural fields to the basin stream hydrograph is similar in magnitude to that of unpaved roads, which occupy 95% less land area.  相似文献   

18.
The tree species Populus euphratica, the shrub Tamarix ramosissima and the sub-shrub Alhagi sparsifolia are phreatophytes that grow along the southern fringe of the Taklamakan Desert (NW China). We hypothesised that in the shoot xylem of these species, the fraction of conduits with a large cross-sectional area and the hydraulic conductivity decrease in the sequence A. sparsifolia > T. ramosissima > Peuphratica according to the different ground water distances at the typical sites of the species’ occurrence. The theoretical hydraulic conductivity related to the total cross-sectional xylem area (kttot) or to the cross-sectional area of the conduits (ktcond) was computed using a modified Hagen-Poiseuille equation. The percentage of wide conduits and ktcond were highest in A. sparsifolia, and smallest, in Peuphratica. With regard to kttot, the diffuse-porous to semi-ring-porous P. euphratica occupied an intermediate position due to an increased percentage of conducting area related to the total cross-sectional xylem area. This figure as well as kttot were lowest in the semi-ring-porous to ring-porous T. ramosissima. The kttot values corresponded to the leaf area-related hydraulic conductivity calculated from measurements in the field. Altogether, our results match the typical occurrence of the species with respect to the ground water depth.  相似文献   

19.
Modern assessment and monitoring of aquatic ecosystems is increasingly based on biota and the “reference condition” approach, in which the observed values (O) of biological variables are compared to those expected in the absence of human disturbance (E). To use this approach, correct estimation and validation of reference conditions are critical. Because appropriate modern or historical data are never available for this approach, palaeolimnological data offer an alternative. We used a calibration data set from 73 profundal sites in semi-pristine Finnish lakes to construct a regression model for estimating expected values for the chironomid Benthic Quality Index (BQI)—a macroinvertebrate metric widely used in bioassessment—from environmental variables that are insensitive to human disturbance. For comparison, reference values were estimated using the European legislative rationale based on a priori lake typology. Performance of the alternative approaches was assessed by internal ‘leave-one-out’ cross-validation using the calibration set and by external cross-validation using independent palaeolimnological data on BQI values representing the historical pristine status of 24 lake basins. Additionally, for 19 of these sites, which vary in their degree of human impact, the ratio of present BQI to that in pristine condition, which shows the degree of actual change, if any, was calculated from palaeolimnological data and compared with the O/E ratios based on the present chironomid data and estimated E. A linear regression model with mean depth and mean/maximum depth ratio as independent variables estimated the reference values of BQI much closer to the observed ones (r 2 = 0.58, RMSEP = 0.65 and r 2 = 0.71 RMSEP = 0.55; for internal and external cross-validation, respectively) than did the typology approach (r 2 = 0.28, RMSEP = 0.86; r 2 = 0.10, RMSEP = 0.97). The regression approach also yielded O/E ratios more similar to the actual ones (r 2 = 0.79, RMSEP = 0.09) than did the typology approach (r 2 = 0.62, RMSEP = 0.23). Our results strongly support the use of lake morphometric variables and modelling instead of categorical lake typology for the establishment of reference conditions for profundal macroinvertebrate communities and demonstrate the utility of palaeolimnological data in the validation of reference values and assessment methods.  相似文献   

20.
Soil salinization is mainly an arid-zone problem leading to land desertification. It reduces soil quality and limits the growing of crops. The control of this problem involves inventorying, mapping, and monitoring soil salinity, which requires cost-effective, rapid, and reliable methods for determining soil salinity in the field, and rapid, specific data-processing methods. This paper shows the usefulness of an integrated methodology involving a hand-held electromagnetic sensor (Geonics-EM38) and the ESAP (Electrical conductivity or salinity, Sampling, Assessment and Prediction) software for assessing, predicting, and mapping soil salinity. The salinity of a 0.45-ha surface-irrigated plot was analysed by reading the EM38 at 161 locations, and by employing the ESAP software for calibrating the sensor, and predicting and mapping soil salinity at multiple depths. To calibrate the EM38 sensor, the electrical conductivity of the saturation extract (ECe) of 57 soil samples taken at 19 points was measured. The multiple linear regression (MLR) calibration model predicted ECe from EM38 readings with R2 ranging from 0.71 to 0.95 for the multiple-depth profile. Furthermore, the MLR calibration model provided field range average estimates of soil salinity. Fifty-seven percent of the field had ECe values above 4 dS m−1. The salinity levels and distribution in the root zone identified areas with inverted profiles, which revealed drainage problems. The integrated method presented is a breakthrough in the ability to accurately and rapidly assess soil salinity in agricultural lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号