首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local site effect microzonation of Lorca town (SE Spain)   总被引:1,自引:0,他引:1  
Local site effect assessment based on subsurface ground conditions is often the key to evaluate urban seismic hazard. The site effect evaluation in Lorca town (south-eastern Spain) started with a classification of urban geology through the geological mapping at scale 1:10,000 and the use of geotechnical data and geophysical surveys. The 17 geological formations identified were classified into 5 geological/seismic formations according to their seismic amplification capacity obtained from ambient vibration measurements as well as from simultaneous strong motion records. The shear-wave velocity structure of each geological/seismic formation was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. Nakamura’s method was applied to determine a predominant period distribution map. The spectral amplification factors were fourfold the values recorded in a reference hard-rock site. Finally, the capability of this study for explaining the damage distribution caused by the May 11th, 2011 Lorca destructive earthquake (Mw \(=\) 5.2) was examined. The methods used in this work are of assistance to evaluate ground amplification phenomena in urban areas of complex geology as Lorca town due to future earthquakes with applicability on urban seismic risk management.  相似文献   

2.
On 24 May 2014, a Mw 6.9 earthquake occurred in the west of Gokceada Island, northern Aegean Sea. The earthquake was close to Canakkale, Enez, Tekirdag cities, and damaged 300 buildings in the Marmara Region, NW Turkey. We simulated its broadband (0.1–10 Hz) ground motions including 1D deep and shallow structures soil amplification effects at the 12 strong ground motion stations in the western Marmara Region. The 1D deep velocity structures from the focal layer to the engineering bedrock with an S-wave velocity of 0.78 km/s in different azimuthal directions were tuned by comparing the observed group-velocity dispersion curves of Rayleigh and Love waves from the mainshock with theoretical ones. We also added the shallow parts from previous surveys into the 1D models. Synthetic seismograms on the engineering bedrock were generated using the discrete wave number method with a source model and the 1D deep velocity structures. Then the surface motion was generated considering shallow soil amplification. The synthetic seismograms are generally in good agreement with the observed low and high-frequency parts at most of the stations indicating an appropriateness of the source model and the 1D structural model.  相似文献   

3.
Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (Vs30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.  相似文献   

4.
Rotational components of earthquake ground motion have not been considered for seismic analysis, design and performance assessment because recordings of these components are unavailable. A number of procedures have been proposed to extract rotational components of ground motion from translational time series recorded at multiple, closely spaced recording stations. In this paper, a new procedure that is capable of capturing higher frequency content in rotational time‐series is presented. The frequencies at which numerical errors are introduced in the solution, which are a function of apparent wave velocity and array dimension, are identified. Results are presented for the proposed procedure, the widely accepted geodetic method, and a single‐station procedure developed by the authors, all using data recorded at the Lotung array in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.  相似文献   

6.
The vertical component of the seismic noise has been recorded in two different sites near the towns of Mercato S. Severino and Benevento in Southern Italy by a small aperture array, in order to investigate the characteristics of the noise propagation and to study the site response. Three different array techniques have been applied in the two investigated sites: Beam Forming, High Resolution and Spatial Correlation methods. We used two simple array geometry for localising possible noise sources and estimating local shallow structure using ambient noise. The cross shaped array results effective for determining the phase velocity of waves in the case when the noise is from a single localised source; the circular array, on the other hand, is successfully used when the noise sources are distributed. The main results are: the analysis of a coherent component of the noise recorded in the two sites, interpreted as Rayleigh waves, results in reasonable velocity models; the noise recorded in the M.S.S. Plain is a space stationary signal, while the noise at the Benevento site is possibly produced by a stable noise source located close to the array. Due to this evidence, the correlation method does not yield satisfactory results when applied to the Benevento site. The 2–6 Hz spectral peaks of the noise recorded in the M.S.S. Plain can be interpreted as due to a site effect, considering the satisfactory agreement of the noise spectrum at those frequencies with the theoretical transfer function computed on the basis of the velocity model deduced from the Rayleigh waves dispersion analysis.  相似文献   

7.
Valuable information about one-dimensional soil structures can be obtained by recording ambient vibrations at the surface, in which the energy contribution of surface waves predominates over the one of other types of waves. The dispersion characteristics of surface waves allow the retrieval of the shear-wave velocity as a function of depth. Microtremor studies are usually divided in two stages: deriving the dispersion (or auto-correlation) curve from the recorded signals and inverting it to obtain the site velocity profile. The possibility to determine the dispersion curve over the adequate frequency range at one site depends on the array aperture and on the wavefield spectra amplitude that can be altered by filtering effects due to the ground structure. Microtremors are usually recorded with several arrays of various apertures to get the spectral curves over a wide frequency band, and different methods also exist for processing the raw signals. With the objective of defining a strategy to achieve reliable results for microtremor on a shallow structure, we analyse synthetic ambient vibrations (vertical component) simulated with 333 broadband sources for a 25-m deep soil layer overlying a bedrock. The first part of our study is focused on the determination of the reliable frequency range of the spectral curves (dispersion or auto-correlation) for a given array geometry. We find that the wavenumber limits deduced from the theoretical array re sponse are good estimates of the valid spectral curve range. In the second part, the spectral curves are calculated with the three most popular noise-processing techniques (frequency–wavenumber, high-resolution frequency–wavenumber and spa tial auto-correlation methods) and inverted indi vidually in each case. The inversions are performed with a tool based on the neighbour hood algorithm that offers a better estimation of the global uncertainties than classical linearised methods, especially if the solution is not unique. Several array apertures are necessary to construct the dispersion (auto-correlation) curves in the appropriate frequency range. Considering the final velocity profiles, the three tested methods are almost equivalent, and no significant advantage was found for one particular method. With the chosen model, all methods exhibit a penetration limited to the bedrock depth, as a consequence of the filtering effect of the ground structure on the vertical component, which was observed in numerous shallow sites.  相似文献   

8.
利用中国地震局的“中国地震科学台阵——华北地区东部”(简称科学台阵3.2期)项目西拉木伦断裂带东沿地区26个流动台站连续观测数据,通过计算其加速度功率谱密度和相应的概率密度函数及1~20 Hz频段速度均方根值,研究西拉木伦断裂带东沿地区背景噪声特征。研究结果表明,高频段背景噪声时空分布差异性显著,噪声源主要来自人类活动;微震频段背景噪声主要来自海洋活动,其中高频微震频段背景噪声没有时空分布差异;低频微震频段背景噪声有一定的时空分布差异,白天差异性相比夜间更突出,这主要因温度变化和观测井微变形引起;低频段,白天三分向噪声水平大于夜间,且水平向噪声水平和动态范围大于垂直向,主要因白天环境温度变化和地倾斜影响大于夜间,且水平向对温度和地倾斜比垂直向更敏感导致。  相似文献   

9.
The May 20, 2012, Emilia Ml 5.9 earthquake was followed by some major aftershocks, well recorded by a large number of temporary stations that were installed to monitor the sequence. These additional recordings allowed us a thorough testing of the performance of the ShakeMap—a procedure designed to provide rapid information on the experienced ground motion. We found that the shakemaps for the May 29, 2012, Ml 5.8 earthquake, obtained using the permanent stations only, underestimate significantly the ground motion computed with the highest station density, especially for PSA at long periods (T \(=\) 3.0 s). This low-frequency motion is controlled primarily by the surface waves recorded in the Po plain: the observed site effects are likely not accounted properly by the site correction coefficient based on Vs30 as implemented in the ShakeMap procedure. The shakemaps determined during the seismic sequence have been included in an Italian national law that was passed after the 2012 earthquake. According to this law, the factories safety verifications were bound to the comparison between the shakemaps and the design acceleration required by the current national seismic code. We then decide to appraise the impact of the shakemap accuracy on the law provisions. Following the law recommendations, we have estimated the possible errors resulting from the incomplete evaluation of the ground shaking: our results show that, if the complete dataset were available at the time of the law approval, the number of buildings for which the safety check was required would have been significantly smaller.  相似文献   

10.
A complex seismic sequence characterised by two thrust earthquakes of magnitudes M \(_\mathrm{L}\) 5.9 and M \(_\mathrm{L}\) 5.8 occurred on May 20 and 29, 2012, respectively, and activated the central portion of the Ferrara Arc structure beneath the Po Plain in northern Italy. The sequence, referred to as Emilia 2012, was recorded by the Italian Strong Motion Network, the Irpinia Network, the Friuli Venezia Giulia Network and 15 temporary stations installed by the Civil Protection Department. In this study, we compile and analyse a large dataset that contains 3,273 waveforms from 37 \(M_\mathrm{L} \ge 4.0\) seismic events. The main aim of this paper is to characterise the ground motion induced by the Emilia 2012 seismic sequence and compare it with other data in the Italian strong motion database and to the recent Ground Motion Prediction Equations (GMPEs) developed for northern Italy, all of Italy and Europe. This is achieved by (1) the computation and analysis of the strong motion parameters of the entire Emilia Strong Motion Dataset (ESMD) and (2) a comprehensive investigation of the May 29 event recordings in terms of time–frequency analysis, the ground motion parameters and the response spectra. This detailed analysis was made possible by the temporary Civil Protection Department stations that were installed soon after the May 20 event at several municipalities in the epicentral area. Most of the recordings are characterised by low-frequency content and long durations, which is a result of the thick sedimentary cover that is typical of the Po Plain. The distributions of the observed horizontal peak ground accelerations and velocities (PGAs and PGVs) with distance are generally consistent with the GMPEs. This is particularly true for the data from M \(_\mathrm{L} \ge \) 5.0 (M \(_\mathrm{W}\ge \) 5.0) events, though the data are scattered at distances beyond approximately 60–70 km and show faster attenuation than the European GMPEs. The horizontal components for the May 29 event at two near-fault stations (Mirandola and San Felice sul Panaro) are overestimated by all of the analysed GMPEs. In contrast, the vertical components, which played an important role in the shaking near the source, are underestimated. The May 29 event produced intense velocity pulses on the horizontal components and the highest peak ground acceleration ever recorded in Italy on the vertical component of the Mirandola near-fault station. The ground motion recordings contained in the ESMD significantly enrich the Italian strong motion database. They contribute new information about (1) the possibility of exceeding the largest recorded PGA in Italy, (2) the development of a spectral design that takes into account the role of the vertical component and the extreme variability of the near-fault ground shaking, and (3) the characterisation of the ground motions in deep sedimentary basins.  相似文献   

11.
In this study data and results of a high-resolution experiment in Cephalonia (Greece) regarding empirical basin effects are presented. A total of 59 velocimeters and 17 accelerometers were deployed in the basin of Argostoli Cephalonia (Greece), for a period of 7 months (September 2011–April 2012). Due to high seismicity of the western Greece and surrounding area this array recorded thousands of local, regional and global events. Data used in this work come from a selection of 162 regional and local earthquakes, 3 km ≤ R ≤ 600 km, with magnitude range, 1.0 ≤ M ≤ 5.2. Based on high signal-to-noise ratio recordings and two selected reference stations, variation of several intensity measures (PGA, PGV, Arias Intensity, Cumulative Absolute Velocity), significant duration, HVSR and SSR of ground motion recordings on soil sites within the basin is carefully examined for a range of frequencies of engineering interest. Comparison of results with a detailed 2D geologic model shows a good consistency both in amplification and frequency domain. Influence of “reference” site on ground motion variation of soil sites is also discussed in light of our results. Finally, it is suggested that 2D or/and 3D theoretical modeling should be performed given the availability of geological and geophysical parameters to define a realistic model of the basin. Results of this study can undoubtedly serve in model validation and improvement of ground motion simulation tools.  相似文献   

12.
A study of the coseismic displacement and fling pulse recorded during the Mw 6.5 30 October 2016 Central Italy earthquake is presented. The near-field has been well documented, owing to the deployment of additional strong-motion stations following the earlier events of the 2016 Central Italy seismic sequence. As a result, there are numerous stations with evidence of coseismic displacement and fling pulse. In this study, 25 records with strike distance of less than 25 km and rupture distance under 28 km are considered. Approximate coseismic displacements have been recovered by a bilinear model to remove the low frequency noise in the records. The bilinear noise model uses two linear regression segments on the velocity trace to remove baseline offsets. After obtaining the coseismic displacement time series, the fling pulse period is examined. Existing methods of obtaining the fling pulse period are reviewed and a proposed algorithm is considered for automatic fling pulse detection. Both horizontal and vertical fling periods are obtained, unlike many studies which neglect the vertical fling. It is shown that the fling pulse period is highly variable (~?2–16 s) in the near-field region but exhibits some trends with various site-to-source distances.  相似文献   

13.
利用背景噪声估计华北地区场地放大效应   总被引:3,自引:2,他引:1       下载免费PDF全文
用噪声互相关函数聚束方法得到中国华北地区噪声源的极值方位和慢度,然后将噪声傅里叶谱在该方位和慢度点进行聚束,并计算得到噪声的频率波数功率谱。将该功率谱作为输入,单台站噪声的自功率谱作为响应,二者的比值可用于计算华北地区相对场地放大因子。计算结果显示:平原地区放大效应明显大于山地地区,而平原地区的场地放大效应与渤海湾盆地沉积层厚度有直接关联。本研究可为计算场地放大效应提供一种可行的途径。  相似文献   

14.
The Algiers–Boumerdes regions were hit by an M w 6.8 destructive earthquake on May 21, 2003. The accelerometric and seismometric networks successfully recorded the main shock and many aftershocks at some locations where the damage was most extensive. A microtremor measurement was performed in the same locations; some of them are localized on the Mitidja basin. In this paper, we propose to analyze earthquake-induced site effect derived from horizontal to vertical spectral ratio from ambient noise (noise horizontal to vertical—NHV), or from very weak, weak, moderate and strong ( peak ground acceleration—PGA >10 % g) seismic motions (EHV), and transfer function evaluation from soil velocity profile data at four sites. H/V spectral ratios are computed by using both Fourier and response spectra. Compared to the transfer function, the obtained results show that in the case of soft soils, NHV as well as EHV give a good estimation of the soil's fundamental frequency, whereas the NHV underestimate the H/V amplitude and the EHV amplitude increase with the seismic motion intensity. In the case of firm soils, whereas the NHV gives flat curves synonymous for a rock site or a bump, the EHV is more appropriate as seen by identifying clear peaks with non negligible amplitude. In the case of soft sites as well as in the case of firm sites, strong peaks at frequencies higher than the fundamental one are found from EHV curves. Those peaks would not be found when looking at NHV ratios alone, are evidenced by the computed transfer function as well as by an analytical formulation, and are in agreement with the observed distribution of damage during the M w 6.8 2003 Boumerdes earthquake. Finally, the same analysis is performed by using response spectra rather than Fourier spectra and leads to the same conclusions. Moreover, the calculation of the response spectra is more easily compared with the smoothing operation of the Fourier spectra.  相似文献   

15.
中国东北地区地壳上地幔三维S波速度结构   总被引:12,自引:9,他引:3       下载免费PDF全文
收集了中国东北地区159个固定地震台2011年1月至2012年6月和27个流动地震台2011年1月至2011年6月间的垂向连续记录,根据噪声成像方法得到研究区(105°E-135°E, 39°N-52°N)较短周期(8~30 s)的瑞雷波群速度和相速度频散资料,再结合该区已有的天然地震长周期瑞雷波(36~145 s)的群速度频散资料,我们反演得到了中国东北地区200 km以浅深度范围内的三维壳幔S波速度结构,并得到了该区的岩石圈厚度分布图.结果表明:研究区中、下地壳S波速度结构的横向分布,在重力梯度带两侧有很大的不同,以东地区显示为大范围的高速,以西地区则呈现为大面积的低速;松辽盆地下方岩石圈地幔表现为显著的高速,岩石圈地幔底界面深度可能在90~100 km,薄的岩石圈盖层暗示东北地区的岩石圈可能发生了减薄;郯庐大断裂下方呈现出大范围的比较显著的低速特征,断裂下方上地幔顶部可能有热物质活动.  相似文献   

16.
基于台阵记录的土层山体场地效应分析   总被引:1,自引:1,他引:0       下载免费PDF全文
卢育霞  刘琨  王良  魏来  李少华 《地震学报》2017,39(6):941-954
选取2008年5月25日至8月7日期间由甘肃省文县上城山地形效应台阵获取的12次汶川地震余震事件(MS≥4.0),在分析其地震动基本参数的基础上,采用参考场地谱比(RSSR)法和水平-竖向谱比(HVSR)法,研究了不同地震作用下上城山地形台阵的场地效应.分析结果显示:随着高程和覆盖层的增加,记录台站地震动的PGA呈增大趋势,地震频谱形状由宽变窄;上城山台阵记录到的地震波在地形基阶频段(2—4 Hz)和浅部土层频段(7—9 Hz)的幅值明显放大,RSSR曲线显示山顶NS向的土层频段谱比大于山体地形频段谱比;由于土层山体竖向地震动在中高频段放大,使得HVSR方法谱比结果在中高频段较RSSR方法所得结果明显偏低,而在山体基阶频段附近两种方法的谱比值接近.松散土层山体的台阵记录特征体现了地形和土层对地震动的联合作用,揭示了强震区起伏地形场地震害加重及地震滑坡集中发生的原因所在.   相似文献   

17.
A moderate Mw 4.9 earthquake struck the Beni Haoua (Algeria) coastal area on April 25, 2012. The mainshock was largely recorded by the accelerograph network of the Centre National de Recherche Appliquée en Génie Parasismique (CGS). The same day the earthquake occurred, eight mobile short period stations were deployed through the epicentral area. In this study, we use accelerogram and seismogram data recorded by these two networks. We combined the focal mechanism built from the first motion of P waves and from waveform inversion, and the distribution of aftershocks to well constrain the source parameters. The mainshock is located with a shallow focal depth, ~9 km, and the focal mechanism shows a nearly pure left lateral strike slip motion, with total seismic moment of 2.8?×?1016 N.m (Mw?=?4.9). The aftershocks mainly cluster on a narrow NS strip, starting at the coast up to 3–4 km inland. This cluster, almost vertical, is concentrated between 6 and 10 km depth. The second part of this work concerns the damage distribution and estimated intensity in the epicentral area. The damage distribution is discussed in connection with the observed maximum strong motion. The acceleration response spectrum with 5 % damping of the mainshock and aftershocks give the maximum amplitude in high frequency which directly affects the performance of the high-frequency structures. Finally, we tie this earthquake with the seismotectonic of the region, leading to conclude that it occurred on a N–S transform zone between two major compressional fault zones oriented NE–SW.  相似文献   

18.
The Kumaon Himalaya region in India has accumulated considerable seismic risk potential from moderate to high seismicity due to ongoing tectonic evolutionary processes. To assess conditions of high seismic risk arising from local site effects at populated locations, we applied the empirical horizontal to vertical (H/V) spectral amplitude ratio method (Nakamura in Quarterly Reports of the Railway Technical Research Institute Tokyo, 30:25–33, 1989) using ambient seismic noise recorded by a network of 32 digital broadband seismographs from June 2005 to June 2008. The data and the estimated parameters were subjected to stability tests to assess the effect of seasonal variations. Seasonal variations in the ambient noise data seemed to show a lesser effect on fundamental frequency estimates and a slightly greater effect on the peak H/V amplitudes. Validation of the ambient noise results was done by complementary tests using H/V ratios of local and regional earthquakes. The ‘peak’ corresponding to the fundamental resonance frequency is prominently present in both the ambient noise and the earthquake datasets. The study locations showed distinct H/V curve topologies, corresponding to the effects of both velocity contrast at well-defined frequencies and characteristic topographic effect around a certain frequency range. The clearly indicated ‘peaks’ in the H/V curves possibly correspond to velocity contrasts created by weathered sediments overlying hard rock basements in rocky hills. Our study indicates high site responses at many populated locations near the surface trace of the seismically active Main Central Thrust (MCT) and other fault boundaries. The fundamental resonance frequencies estimated from the site response studies at the 32 locations could be useful in preliminary site characterization, ground motion prediction and seismic hazard analysis.  相似文献   

19.
We have developed a new stacking technique in ambient noise tomography to obtain high-quality dispersion curves of Rayleigh waves.This technique is used to stack the vertical components of the Estimated Green Functions(EGFs) obtained respectively from cross correlation of the ambient noise data recorded by a remote seismic station and one of the short distance seismic stations of a seismic array.It is based on a phase-matched filter and is implemented by a four-step iterative process:signal compression,stacking,signal extraction and signal decompression.The iterative process ends and gives the dispersion curve of Rayleigh wave when the predicted one and the processing result converge.We have tested the method using the vertical components of synthetic Rayleigh wave records.Results show that this new stacking method is stable and it can improve the quality of dispersion curves.In addition,we have applied this method to real data.We see that the results given by our new technique are obviously better than the ones employing the traditional method which is a three-step process:signal compression,signal extraction and signal decompression.In conclusion,the new method proposed in this paper can improve the signal to noise ratio of EGFs,and can therefore potentially improve the resolution of ambient noise tomography.  相似文献   

20.
The Hronov-Po?í?í Fault Zone (HPFZ) is an active tectonic area with regularly occurring shallow earthquakes up to magnitude 5. For their exact locations, at least an average velocity model of the area is needed. A method of measuring local phase velocities of surface waves using the array of stations deployed permanently in the HPFZ is introduced. Seven regional and teleseismic events are selected to represent different backazimuths of propagation. Applicable range of periods is estimated for each event. The coherency of the waves reaching the array is constraining the short period range. The dimension of the array is a limiting factor for the long-periods. A dispersion curve of Rayleigh wave phase velocity measured at the vertical component and characterizing 1D properties of the target area is determined using the seven measurements for the interval from 1 to 40 s. An isometric method is used to invert the determined dispersion curve for shear and longitudinal velocity distribution from the surface to the depth of 65 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号