首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
History and modes of Mesozoic accretion in Southeastern Russia   总被引:8,自引:1,他引:8  
Boris  Natal'in 《Island Arc》1993,2(1):15-34
Abstract The history of Mesozoic accretion and growth of the Asia eastern margin, occupied by Southeastern Russia, includes five main events; two main tectonic regimes were responsible for the growth of the continent. In the Triassic-Jurassic, Early Cretaceous and Late Cretaceous-Paleogene, the subduction of the oceanic lithosphere resulted in the formation of wide accretionary wedges of the Mongol-Okhotsk, Khingan-Okhotsk and Eastern Sikhote-Alin active continental margins, respectively. These stages of the comparatively slow growth of the continent were broken by stages of rapid growth and drastic changes in the shape of the continent, since at these stages large terranes of various tectonic nature collided with active continental margins. At the end of the Early-Middle Jurassic, the Bureya terranes collided with the Mongol-Okhotsk active margin, and at the beginning of the Late Cretaceous there was collision of the Central and Southern Sikhote-Alin terranes with the Khingan-Okhotsk active margin.
Collision-related structural styles in all cases are indicative of oblique collision and great strike-slip motions along the main sutures. The peculiarities of the terrane's geological structure show that prior to collision with the Mongol-Okhotsk and Khingan-Okhotsk active margins, they had already accreted to Asia and then migrated along its margins along the strike-slip faults. The Bureya terranes were squeezed out of the compression zone between Siberia and North China. This compression zone originated after the Paleozoic oceans which divided these cratons had closed. The Khanka terranes and Mesozoic accretionary wedge terranes of the Sikhote-Alin shifted along the strike-slip faults subparallel to the Asia Pacific margin. Strike-slip motions resulted in duplication of the primary tectonic zonation.  相似文献   

2.
In this paper palaeomagnetic poles known to be older than 2000 m.y. in age are assessed in the context of a continental reconstruction derived from younger Precambrian palaeomagnetic results. It is found that the combined data from North America and Africa define a single apparent polar wander path during the intervals 2700-2500 m.y. and 2160-2000 m.y. using the same continental reconstruction as that derived from younger poles. A rapid polar shift is identified at ca. 2150 m.y. and a closed loop is present in the curve between 2160 and 2000 m.y. Palaeomagnetic results from the Rhodesia/Kaapvaal, Kasai, West Africa and North America (Slave and Superior) cratons define segments of this loop which are statistically identical within errors of the pole positions and their assigned ages.These results in common with younger Proterozoic data (2000-800 m.y.) confirm that the crust behaved as an integral unit during these times, although undergoing internal deformation along mobile zones which has not yet proved detectable by the palaeomagnetic method. The 2700-2000 m.y. interval includes the Archaean-Proterozoic transition during which major structural anisotropy began to be imprinted on the sialic crust. Tectonic straight belts and deformed anorthosites lie within a single great-circle belt on the continental reconstruction incorporating Gondwanaland and North America. This same belt later developed into an arc of major tectonic and magmatic activity (<2250 m.y.) including massive anorthosites, rapakivi granites, acidic volcanism and mobile belts.  相似文献   

3.
The Neoproterozoic Gondwana supercontinent cycle includes the break-up of a Mesoproterozoic supercontinent here termed Pangea Y, followed by the fusion of several cratons and the large East Gondwana continent to form Gondwanaland. The accretion can be analysed in terms of plate tectonics. Rifting of Pangea Y was active in the 1100-650 Ma interval. Collision and deformation events occurred in the 820-540 Ma interval. The earliest collision event at 820 Ma between the Sao Francisco-Congo craton and East gondwana formed the Zambezi belt. Major shear zones in transpressional mobile belts developed from 820 to 550 Ma. Post orogenic magmatism and extension events affected the Gondwana supercontinent in the 660-500 Ma interval.  相似文献   

4.
中下地壳和俯冲带区域的高电导率异常(0.01~1 S·m-1)可能与地球内部的特定物质及其变化有关.斜长角闪岩是中下地壳以及俯冲带区域的重要组成之一,高温高压下斜长角闪岩的电导率研究对认识电导率异常具有重要意义.本研究采用交流阻抗谱法,在0.5,1.0,1.5 GPa和473~1073 K条件下测量了天然斜长角闪岩样品的复阻抗,实验结果表明压力对斜长角闪岩的电导率影响非常小,而温度对于电导率影响非常显著,其电导率在1073 K可以达到10-0.5 S·m-1;实验获得的活化能值为52.21 kJ·mol-1,推断其导电机制可能为小极化子传导(Fe2+的氧化)主导.结合本实验获得的结果与大陆岩石圈和俯冲带的温度结构,我们计算得到相应的电性结构剖面,并与三种不同构造背景下的大陆岩石圈(克拉通、大陆裂谷和活动造山带)和俯冲带区域的电磁剖面结构进行了对比研究,结果发现斜长角闪岩可以解释大陆裂谷和活动造山带构造背景下的莫霍面附近的高电导率异常现象,同时可能是导致较热的俯冲带区域(例如卡斯卡迪地区)高电导率异常现象的原因.  相似文献   

5.
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Circum-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental deformations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of ancient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin subsidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated ancient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan-Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton interiors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: propagating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in central-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, together with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.  相似文献   

6.
喜马拉雅西北部逆冲带的地壳电性结构   总被引:2,自引:1,他引:1       下载免费PDF全文
印度板块北部地形起伏较大的喜马拉雅山地区由几个构造互异的地质单元组成,依地形高、低把喜马拉雅碰撞带分成低喜马拉雅和高喜马拉雅.为了研究与主要逆冲带(含主缝合带MCT和主边界带MBT)有关的地壳电性结构,沿Rohtangpass (海拔4000 m) 到Mandi (海拔400 m)剖面进行了MT探测.通过对16个测点观测资料的分析和考虑地形的二维反演,获得了沿剖面的二维电性结构.电性结构显示,在Chail和主逆冲边界带下方,东西走向的缝合带突然转向北.在下喜马拉雅的Rampur 区段的元古代基底为范围较大的高阻体,而浅部地壳被逆冲带分成向北倾的电导性块体和电阻性块体.Chail 逆冲带东侧低喜马拉雅Rampur 区段的推挤和它西侧的基底脊柱体导致主边界带及相关的逆冲带(Kangra 拐角)向北转弯,Kangra拐角处的应力可能是由于西侧基底脊柱体进入到Kangra 区引起的.  相似文献   

7.
The Namibian margin is dominated by the late Proterozoic to early Cambrian fold belts of the Damara Orogen, which wrap around and separate the Congo and Kalahari Cratons. This mosaic of relatively ‘soft’ fold belts and ‘hard’ cratons apparently controlled the path for the opening of the South Atlantic in the early Cretaceous. The continents split along the coast-parallel fold belts of the Damara Orogen while the inland fold belt (Damara Belt) was effected by extension and widespread igneous intrusion but never developed to the rift stage. This paper is concerned with the interpretation of magnetotelluric (MT) data along a 200 km NW-SE profile across the Damara Belt in NW Namibia. The regional, two-dimensional electrical resistivity model and the induction vector data exhibit three distinctive zones: (i) a generally very resistive upper crust which is typical for the granites and metasediments of the Damara Belt, (ii) two subvertical conductors in upper to mid-crustal levels which correlate with major tectonic zone boundaries and (iii) a highly conductive middle to lower crust in the southern part of the profile. The geometry of the conductive structures could reflect a regional shear system in which upper crustal listric faults pass into a detachment zone in the middle crust. We interpret the high electrical conductivity in terms of graphite (or other forms of mineralization) enrichment along the shear planes. This zone of crustal weakness may have originated in Pre-Damara times and had probably experienced several episodes of crustal reactivation before the intrusion of basaltic dike swarms during the Cretaceous rifting and magmatism associated with the opening of the South Atlantic.  相似文献   

8.
The exposed elements of the Lower Proterozoic orogenic belts of the Halls Creek sub-province, Northern Australia, lie in fault zones which have suffered repeated tectonic activity at various times through the Proterozoic and Phanerozoic. The Halls Creek and King Leopold orogenic domains subtend an angle of 80° and are characterized by linear late tectonic batholithic complexes several hundred kilometres long but only a few tens of kilometres wide, reminiscent of those in Phanerozoic Cordilleran orogenies. The associated superposed folding and high temperature metamorphism are more akin to those in Phanerozoic collision orogenies.The sub-province is analyzed in the wider context of the North Australian orogenic province which was deformed, metamorphosed and intruded by granitic plutons approximately 1900-1800 Ma ago. In this province the Archaen basement was extended and broken into a mosaic of blocks, some of which (now largely concealed by younger Kimberley and McArthur basin sediments) retained a more positive character and fed sediment to intervening regions (such as the Pine Creek Geosyncline) which suffered greater extension and subsidence, but which retained a thinned Archaean basement.The Halls Creek Group was deposited in a trough to the south-east of the Kimberley island continent, and deposition was probably broadly contemporaneous with, and continuous with, that in the Pine Creek geosyncline. A volcanic—fine grained clastic—carbonate phase of marine deposition, following basin formation, is represented by the Biscay Formation. During the later phase of basin evolution widespread flysch facies (Olympio Formation), partly derived from the island continent, was deposited and is now preserved in low grade zones on both sides of the main belt of high strain and upper amphibolite to lower granulite facies metamorphism which displays recumbent folding and nappe tectonics with fold axes oblique to the major faults.No island arc compex or paired metamorphic belts are present in the orogenic belts, and it is concluded that the lithospheric extension and subsequent convergence did not involve the generation of oceanic crust or B-subduction.In the Halls Creek domain vergence is south-easterly across all zones and is related to oblique convergence leading to limited A-subduction of the basinal area in the south-east beneath the island continent to the north-west, accompanied by left-lateral strike-slip or transform fault movements on the north-trending major faults. The convergence generated the associated high temperature metamorphism and plutonism on the leading edge of the lower plate.A phase of upright folding (with trends varying continuously form E-W in the King Leopold belt to NNE-SSW in the Halls Creek belt) intervenes between the main recumbent deformation and metamorphism (ca 1920 Ma ago) and the emplacement of the late tectonic granite batholiths (ca 1840 Ma ago) which are fault controlled.The province represents a distinctive type of linear Proterozoic ensialic orogeny, not explicitly identified previously, and it needs to be distinguished both from true collision orogenies of the Phanerozoic, involving a Wilson Cycle, and from the areally extensive Proterozoic orogenies with which it is associated. Its essential characteristics are due to convergence between a small continent and an ‘oceanic’ area underlain by thin continental crust, resulting in limited A-subduction of the latter prior to crustal shortening.  相似文献   

9.
Continent–continent collisions are an important tectonic process and have played a fundamental role in the evolution of the modern continents. A combination of geological and geophysical data has provided new constraints on the structure and temporal evolution of these orogens. Magnetotelluric (MT) studies have been an important part of these studies since they can constrain the fluid content and thermal structure which are key parameters for defining the rheology of the crust and upper mantle. MT studies of the Himalaya have defined the geometry of active faults associated with continued plateau growth. Orogen scale MT studies have shown that both the India–Asia collision (Tibetan Plateau and Himalaya) and the Arabia–Eurasia collision (Eastern Anatolia) have developed a low resistivity mid-crustal layer with upper surface at 10–20 km that is likely due to a combination of partial melt and associated aqueous fluids. The properties of this layer are consistent with a strength contrast that permits crustal flow over geological timescales. The upper mantle from the Moho to at least 100 km beneath both Northern Tibet and the Anatolian Plateau is characterized by low resistivity values (10–30 Ωm) indicating the presence of shallow asthenosphere. Future integrated seismic and MT studies of collision zones are needed fully to explore the 3D structures associated with deformation and further constrain geodynamic models.  相似文献   

10.
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.  相似文献   

11.
Nd isotopic data from the Zimbabwe and Kaapvaal cratons and the Limpopo, Kalahari, Namaqualand and Damara mobile belts imply that over 50% of present-day continental crust in this region had separated from the mantle by the end of the Archaean and that< 10% of continental crust of southern Africa has formed in the last 1.0 Ga. Such a growth rate implies that average erosion rates through geological time were high and that evolution of continental crust has been dominated by crustal growth prior to 1.4 Ga, and crustal reworking since that time. The evolution of average crust is not represented directly by clastic sediment samples but may be determined from sediment analyses if both the time of orogeneses and the average erosion rate are known. Both trace element data from southern Africa granitoids and the high erosion rates implied by the isotopic study suggest that growth of continental crust in the Archaean was by underplating rather than lateral accretion, but arc accretion was the dominant mechanism after 2.0 Ga.  相似文献   

12.
Yukio  Isozaki 《Island Arc》1997,6(1):2-24
Abstract Proto-Japan originated from a continental margin of the Neoproterozoic Yangtze (South China) craton. It represents a unique Permo-Triassic tectonic setting in western Panthalassa, where two distinct types of orogenic belt occurred side by side. There was an accretionary orogen between the Yangtze craton and the Proto-Pacific (Farallon) Plate and a collisional orogen between the Sino-Korean (North China) and Yangtze cratons. This article reviews results of the latest on-land geological studies concerning Permo-Triassic tectonics in Japan and proposes a new plate tectonic interpretation as well as a paleogeographic reconstruction of this particularly unique geotectonic regime. Special emphases are given to (i) the accretion processes and products derived by collision-subduction of the Permian Akiyoshi paleoseamount and Maizuru paleo-oceanic plateau; (ii) the field occurrence of 220-Ma Sangun high-P/T schists and its implication for the exhumation process and 'tectonic sandwich' structure; (iii) the extensive development of a subhorizontal nappe of the pre-Jurassic rocks and their bearing on the orogenic edifice; and (iv) the restricted occurrence of the 250-Ma collision complex in the Hida and Oki belts and the relevant connection to the Precambrian cratons and collision suture in East Asia. The newly proposed paleogeographic reconstruction is also tested by faunal provinciality of Permo-Triassic fossils from shallow-water sediments.  相似文献   

13.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

14.
In this study the geodynamical scenario along with concepts of mantle plume and mobile belts is utilized to show that most of the existing and potential high thermal regions fall along the (mobile arms affected by the outburst and) traces of mantle plumes. Effects of channeling and partitioning of thermomagmatic flux (TMF) due to these mantle plumes along the mobile belts, particularly near the triple junctions, can be seen in the form of high heat flow and presence of hot springs. Triple junctions manifest over the Indian lithosphere are: Kutch-Cambay, Narmada Son-Godavari, Tapi-Mahanadi, Tapi-Damodar, Pondicherry region, Gulf of Mannar and SW corner of the subcontinent (off-shore), etc. Apart from mobile belts, the deltaic regions of Krishna, Godavari, Ganga, Cauvery, Narmada-Tapi and Indus, etc., are also posses higher level of thermal anomalies as these regions seem to have been substantially influenced by outbursts and traces of Reunion, Kerguelen, Marion and Crozet hotspots. This is reflected from the correlation between plume affected mobile belts and high heat flow regions, large number of hot springs, anomalous electrical conductivity and also deformation or seismicity. Such correlation can be seen along Cambay, west coast trend, Narmada-Son lineament zone, Godavari-Damodar grabens and Bengal basin. Himalayan belt being ongoing collision zone, thermal anomalies are identified in the form of hot springs along the Himalayan arc. At some locations, which might be junction of tectonic trends, there exist significantly large thermal outputs. Puga in Himalayan region is one such example, as seen from high heat flow (max. 468 mW m− 2) and geothermal gradient (234 °C/km max.). Similarly, Tatapani in Narmada Son Lineament (NSL) region is another such example. The present study discusses the correlation between thermal reservoirs identified by magnetotelluric (MT) study results and plume activity and suggests the need for systematic and detailed MT investigations along plume activated mobile strips in other regions to search for geodynamical history and geothermal resources.  相似文献   

15.
天山山前主要推覆构造区的地壳缩短   总被引:19,自引:11,他引:8  
利用平衡地质剖面方法研究天山山前主要褶皱带的地壳缩短,其中3条平衡剖面分别横跨天山南簏的柯坪逆断裂-褶皱带和库车逆断裂-褶皱带,2条剖面横跨天山北簏的玛纳斯活动逆断裂-褶皱带,其余1条剖面横跨吐鲁番中央隆起逆断裂-褶皱带。柯坪活动逆断裂-褶皱带、库车逆断裂-褶皱带、玛纳斯逆断裂-褶皱带和吐鲁番盆地的地壳缩短量分别为40~45km、27~37km、8·5~10·5km和6~7km。天山山前活动逆断裂-褶皱带在EW向上互不重叠,它们的缩短量大致代表了该经度上新生代的最小地壳缩短量,反映出天山地壳缩短由西向东减小的趋势。假定天山山前活动逆断裂-褶皱带开始形成的时间为距今2·5Ma的西域砾岩沉积期,考虑到博阿断裂、塔拉斯-费尔干纳断裂在SN向上的缩短活动分量,上述4个地段的最小缩短速率分别为15·4~17·3mm/a、12·7~16·5mm/a、3·8~4·5mm/a和2·3~2·7mm/a。活动走滑断裂在天山内部特定位置向左偏转,走向由NW转为NWW,在断裂转折的部位走滑活动量转化为天山SN向的缩短变形  相似文献   

16.
以GPS、大面积水准、流动重力测量、跨断层流动形变测量等方面的监测和研究成果为主,围绕青藏块体和中国大陆地壳的运动学特征、动力学特征、震源机制以及孕震机制进行了探讨和研究。多方面的研究结果显示,印度板块对中国大陆的碰撞和挤压,是青藏块体隆升及其周边地区地震孕育和发生的主要动力来源,并通过多方面研究结果的综合分析,提出了“坝体决口孕震模式”的假说。  相似文献   

17.
三维板块几何形态对大陆深俯冲动力学的制约   总被引:1,自引:1,他引:0       下载免费PDF全文
大陆深俯冲及超高压变质作用是大陆动力学的重要研究内容,前人进行了系统的地质、地球物理观测以及数值模拟研究.然而,自然界中大陆板块的俯冲、碰撞及造山过程大部分具有明显的沿走向的差异性,这种典型的三维特征可能很大程度上依赖于会聚大陆板块的初始几何学和运动学特征.本文采用三维高分辨率的动力学数值模拟方法,建立了方形大陆板块和楔形大陆板块两种不同的俯冲-碰撞模型,并且俯冲大陆板块侧面与大洋俯冲带相邻.数值模拟结果揭示大洋板块可以持续地俯冲到地幔之中,而大陆板块俯冲到一定深度处,其前端的俯冲板块将发生断离,并进而造成残余的大陆板块俯冲角度的减小.方形大陆俯冲板块的断离深度约为150km,而楔形大陆俯冲板块的断离深度较大,约250~300km,这很大程度上取决于俯冲带中大洋板块的牵引力和大陆板块的负浮力之间的竞争关系.同时,无论方形还是楔形大陆板块俯冲模型中,板块断离后,侧向的大洋俯冲板块仍可以拖曳约60~70km宽的大陆边缘岩石圈持续向下俯冲,揭示了新西兰东部的洋-陆空间转换俯冲带的动力学机制.并且,数值模型与喜马拉雅造山带和秦岭—大别—苏鲁造山带进行了对比,进而对其高压-超高压岩石空间展布沿走向的差异性特征和机制提供了一定的启示.  相似文献   

18.
We document the thermal record of breakup of the conjugate Rio Muni (West Africa) and NE Brazil margins using apatite fission track analysis, vitrinite reflectance data and stratigraphic observations from both margins. These results permit determination of the timing of four cooling episodes, and the temperature of samples at the onset of each episode. All samples are interpreted to have experienced higher temperatures in the geological past due to i) elevated basal heatflow (palaeogeothermal gradient in Rio Muni-1 well decaying from 58 °C/km during the Mid Cretaceous to 21.5 °C/km in the Late Cenozoic) and ii) progressive exhumation from formerly greater burial depth. A well constrained history of changing palaeogeothermal gradient allows for much more precise quantification of the thickness of eroded section (exhumation) than if a constant heatflow is assumed. Cooling episodes identified from the palaeotemperature data at 110–95 Ma (both margins) and 85–70 Ma (Rio Muni only) coincide with major unconformities signifying, respectively, the cessation of rifting (breakup) and compressional shortening that affected the African continent following the establishment of post-rift sedimentation (drift). The interval between these separate unconformities is occupied by allochthonous rafts of shallow-water carbonates recording gravitational collapse of a marginal platform. The rift shoulder uplift that triggered this collapse was enhanced by local transpression associated with the obliquely divergent Ascension Fracture Zone, and thermal doming due to the coeval St Helena and Ascension Plumes. The data also reveal a c.45–35 Ma cooling episode, attributed to deep sea erosion at the onset of Eo-Oligocene ice growth, and a c.15–10 Ma episode interpreted as the record of Miocene exhumation of the West African continental margin related to continent-wide plume development. Integration of thermal history methods with traditional seismic- and stratigraphy-based observations yields a dynamic picture of kilometre-scale fluctuations in base level through the breakup and early drift phases of development of these margins. Major unconformities at ocean margins are likely to represent composite surfaces recording not only eustasy, but also regional plate margin-generated deformation, local ‘intra-basinal’ reorganization, and the amplifying effect of negative feedbacks between these processes.  相似文献   

19.
Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.  相似文献   

20.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号