首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
This study investigates spatial patterns of sediment-associated zinc (Zn) storage in floodplain deposits and the potential reintroduction of these metal-contaminated sediments to the active channel by bank erosion. We estimate patterns of Zn mass storage by combining longitudinal trends in Zn concentrations with measurements of sediment mass storage in overbank and point-bar deposits. Overbank deposits are the largest contaminant sink, storing five times more Zn than the point-bar deposits. While Zn concentrations decrease downstream because of dilution effects, the total mass of Zn stored in floodplains is greatest in both the upstream reaches and in the wider lower valleys where low channel gradients promote rapid sedimentation. Zn storage is low in middle reaches where steep, narrow valleys with high stream power favor sediment transport over deposition. Overall, more than half of the Zn released by mining remains stored in floodplain deposits within the watershed. The remobilization of Zn from storage is more likely in the upstream and mid-basin reaches where high stream power increases rates of lateral channel migration. Channels in the lower valley lack the stream power to migrate laterally and remobilize the large Zn mass stored in overbank sediments. [Key words: floodplains, Zn contamination, mining, stream power, Wisconsin.]  相似文献   

2.
In February/March 2007 extreme rainfall occurred over a four‐day period in the 7000 km2 East Alligator River catchment in Arnhem Land, northern Australia. The resultant large flood caused extensive bank erosion, channel widening, stripping of point bars and floodplain, resulting in large amounts of sand transport. This sand was largely deposited in the downstream river channel as a sand slug, and as deep overbank sand splays where the valley abruptly widened immediately downstream of an island anabranching, bedrock‐confined reach. Interpretation of a time series of aerial photographs and satellite images from 1950 to 2012 showed that there have been considerable channel changes along the study reach. The aerial photographs show that extensive sedimentation in the same reach as in 2007 also occurred in 1975, 1981 and 1984. Each time, the sand slug was reworked rapidly over succeeding years by subsequent smaller floods, and the channel deepened naturally as sand supply declined due to revegetation of the upstream riparian zone and the reformation and stabilisation of point and lateral bars. Sand slug formation at an intermediate floodout is an episodic process dependent on the supply of large volumes of sand by extensive channel erosion during extreme floods. A conceptual geomorphic model was developed to highlight the differential effectiveness of extreme versus moderate floods.  相似文献   

3.
长江下游南京-镇江河段河漫滩粒度特征   总被引:2,自引:0,他引:2  
分析长江南京-镇江河段3个现代河漫滩沉积孔上部100 cm的粒度特征,探讨宁镇河段现代河漫滩的沉积环境。结果表明:GB孔、ZR孔和ZH孔沉积水动力较小,沉积物颗粒较细,均以粉砂为主; ZR孔的砂含量最多、沉积粒径最大、粒径和砂含量由底层向表层增加;ZH孔分选系数呈明显的阶段性特征。研究认为:河流比降、河势、分汊河床演变以及滩面植被是影响宁镇河段河漫滩粒度特征的重要因素。  相似文献   

4.
The Lamar River watershed of northeastern Yellowstone contains some of the most diverse and important habitat in the national park. Broad glacial valley floors feature grassland winter range for ungulates, riparian vegetation that provides food and cover for a variety of species, and alluvial channels that are requisite habitat for native fish. Rapid Neogene uplift and Quaternary climatic change have created a dynamic modern environment in which catastrophic processes exert a major influence on riverine–riparian ecosystems. Uplift and glacial erosion have generated high local relief and extensive cliffs of friable volcaniclastic bedrock. As a result, steep tributary basins produce voluminous runoff and sediment during intense precipitation and rapid snowmelt. Recent major floods on trunk streams deposited extensive overbank gravels that replaced loamy soils on flood plains and allowed conifers to colonize valley-floor meadows. Tree-ring dating identifies major floods in 1918, ca. 1873, and possibly ca. 1790. In 1996 and 1997, discharge during snowmelt runoff on Soda Butte Creek approached the 100-year flood estimated by regional techniques, with substantial local bank erosion and channel widening. Indirect estimates show that peak discharges in 1918 were approximately three times greater than in 1996, with similar duration and much greater flood plain impact. Nonetheless, 1918 peak discharge reconstructions fall well within the range of maximum recorded discharges in relation to basin area in the upper Yellowstone region. The 1873 and 1918 floods produced lasting impacts on the channel form and flood plain of Soda Butte Creek. Channels may still be locally enlarged from flood erosion, and net downcutting has occurred in some reaches, leaving the pre-1790 flood plain abandoned as a terrace. Gravelly overbank deposits raise flood-plain surfaces above levels of frequent inundation and are well drained, therefore flood-plain soils are drier. Noncohesive gravels also reduce bank stability and may have persistent effects on channel form. Overall, floods are part of a suite of catastrophic geomorphic processes that exert a very strong influence on landscape patterns and valley-floor ecosystems in northeastern Yellowstone.  相似文献   

5.
J.A. Moody  R.H. Meade 《Geomorphology》2008,99(1-4):387-403
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes.Peak flood discharge was about 930 m3 s− 1, which lasted about eight days. During this time, the flood transported 8.2 million tons of sediment into and 4.5 million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7 m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5 m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16 m and the higher terrace by 0.063 m.Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07 m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.  相似文献   

6.
Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits.Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing the width/depth ratio upstream of the uplift. Despite the size of the Mississippi River, it has not yet attained equilibrium since the latest uplift 190 years ago. Small channels that could not downcut through the uplift were filled, locally reversed flow direction, or formed a lake where they were dammed.Uplift and stream response to folding along the Tiptonville dome is less dramatic between 2.3 and 0.53 ka. During this interval, abandoned channel fill and overbank deposition across the dome suggests that it was not a high-relief feature. One earthquake event occurred during this interval (ca. A.D. 900), but coseismic stream response was probably limited to a slight aggradation of a small flood-plain stream.  相似文献   

7.
An 8 m core from the central plain of the Petit Lac d'Annecy, France, two floodplain cores, river bedload sediments and several hundred soil samples from the catchment have been studied using magnetic techniques. The soils, mainly developed on limestones and local glacial tills, show widespread magnetic enhancement with higher ferrimagnetic concentrations and contents of SP grains than found in the lake sediments. Some soils show significant concentrations of canted antiferromagnetic minerals (mainly haematite). Using magnetic quotient parameters the surface soils are classified into four mineralogical types. The lake and floodplain sediment properties over the past 6000 yrs can largely be explained by the erosion and deposition of these sources, with a smaller superimposed biogenic (magnetosomes) signal. Derived sediment-source linkages allow the construction of several hypotheses about geomorphological changes in the catchment system: (i) the long-term erosion of high altitude unweathered substrates has gradually increased towards the present day; (ii) the erosion of high altitude soils has increased within the last 1000 yrs, possibly during the period of the 'Little Ice Age'; (iii) shifts towards an increased erosion of surface lowland soil occurred ~2000 and 1000 yrs ago and may be linked to an accelerated accretion of floodplain overbank deposits; (iv) there has been a significant storage of surface soil within floodplains, which leads to an underestimation of the importance of soil erosion in the lake sediment records; (v) the sediment transported by high magnitude, low frequency flood events has shifted in source from high altitude soils before ~1000 cal. yr BP to lowland and mid-altitude free draining soils after ~1000 cal. yr BP.  相似文献   

8.
James C. Knox   《Geomorphology》2006,79(3-4):286
Understanding the time scales and pathways for response and recovery of rivers and floodplains to episodic changes in erosion and sedimentation has been a long standing issue in fluvial geomorphology. Floodplains are an important component of watershed systems because they affect downstream storage and delivery of overbank flood waters, and they also serve as sources and temporary sinks for sediments and toxic substances delivered by river systems. Here, 14C and 137Cs isotopic dating methods are used along with ages of culturally related phenomena associated with mining and agriculture to determine rates of sedimentation and morphologic change for a reach of the upper Mississippi River and adjacent tributaries in southwestern Wisconsin and northwestern Illinois. The most important environmental change that influenced fluvial activity in this region during last 10,000 years involved the conversion of a late Holocene mosaic of prairie and forest to a landscape dominated by cropland and pastureland associated with Euro-American settlement. Results presented herein for the Upper Mississippi Valley (UMV) show that the shift from pre-agriculture, natural land cover to landscape dominance by agricultural land use of the last 175–200 years typically increased rates and magnitudes of floodplain sedimentation by at least an order of magnitude. Accelerated overbank flooding led to increased bank heights on tributary streams and, in turn, contributed to more frequent deep flows of high energy. These high energy flows subsequently promoted bank erosion and lateral channel migration, and the formation of a historical meander belt whose alluvial surface constitutes a new historical floodplain inset against the earlier historical floodplain. The new historical floodplain serves as a “flume-like” channel that provides efficient downstream transport of water and sediment associated with moderate and large magnitude floods. Floodplains on lower tributaries, however, continue to experience rates of overbank sedimentation that are of anomalously high magnitude given improved land cover and land conservation since about 1950. This lower valley anomaly is explained by minimal development of historical (agriculture period) meander belts because of relatively low stream power in these channel and floodplain reaches of relatively low gradient. In general, long-term pre-agriculture rates of vertical accretion between about 10,000 and 200 years ago averaged about 0.2 mm yr− 1 in tributary watersheds smaller than about 700 km2 and about 0.9 mm yr− 1 on the floodplain of the upper Mississippi River where the contributing watershed area increases to about 170,000 km2. On the other hand, rates of historical vertical accretion during the period of agricultural dominance of the last 200 years average between 2 and 20 mm yr− 1, with short episodes of even higher rates during times of particularly poor land conservation practices. Significant hydrologic effects of mining and agricultural started by the 1820s and became widespread in the study region by the mid-19th century. The hydrologic and geomorphic influences of mining were relatively minor compared to those related to agriculture. High resolution dating of floodplain vertical accretion deposits shows that large floods have frequently provided major increments of sedimentation on floodplains of tributaries and the main valley upper Mississippi River. The relative importance of large floods as contributors to floodplain vertical accretion is noteworthy because global atmospheric circulation models indicate that the main channel upper Mississippi River should experience increased frequencies of extreme hydrologic events, including large floods, with anticipated continued global warming. Instrumental and stratigraphic records show that, coincident with global warming, a shift to more frequent large floods occurred since 1950 on the upper Mississippi River, and these floods generally contributed high magnitudes of floodplain sedimentation.  相似文献   

9.
Gregory R. Brooks   《Geomorphology》2003,54(3-4):197-215
The Holocene evolution of the shallow alluvial valley occupied by the Red River was investigated at two successive river meanders near St. Jean Baptiste, Manitoba. A transect of five boreholes was sited across the flood plain at each meander to follow the path of lateral channel migration. From the cores, 24 wood and charcoal samples were AMS radiocarbon dated. The dates from the lower half of the alluvium in each core are interpreted to represent the age of the lateral accretion deposits within the flood plain at the borehole sites. The ages of these deposits increase progressively from 900 to 7900 and 1000 to 8100 cal years B.P. along each transect, respectively, from the proximal to distal portions of the flood plain. At the upstream meander, the average rate of channel migration was initially 0.35 m/year between 7900 and 7400 cal years B.P., then decreased to 0.18 m/year between 7400 and 6200 cal years B.P., and subsequently varied between 0.04 and 0.08 m/year. Net channel incision of the river since 8100 cal years B.P. is estimated to have ranged between 0.4 and 0.8 m/ky. The pre-6000-years-B.P. interval of greater channel migration is hypothesized to reflect a higher phase of sediment supply that was associated with the establishment of the river system on the former bed of glacial Lake Agassiz. Since 1000 years B.P., the outward migration of the meanders has caused a gradual enlarging of 0.7–2% in the cross-sectional area of the shallow valley at the two meanders. When considered proportionally over timescales of up to several centuries, the widening of the valley cross-section is very low to negligible and is deemed an insignificant factor affecting the modern flood hazard on the clay plain.  相似文献   

10.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

11.
Elizabeth B. Oswald  Ellen Wohl   《Geomorphology》2008,100(3-4):549-562
A jökulhlaup burst from the head of Grasshopper Glacier in Wyoming's Wind River Mountains during early September 2003. Five reaches with distinct sedimentation patterns were delineated along the Dinwoody Creek drainage. This paper focuses on a portion of the jökulhlaup route where erosion of the forested banks created 16 large logjams spaced at longitudinal intervals of tens to hundreds of meters. Aggradation within the main channel upstream from each logjam created local sediment wedges, and the jams facilitated overbank deposition during the jökulhlaup. Field surveys during 2004 and 2006 documented logjam characteristics and associated erosional and depositional features, as well as initial modification of the logjams and flood deposits within the normal seasonal high-flow channel. Overbank deposits have not been altered by flows occurring since 2003. Field measurements supported three hypotheses that (i) logjams present along the forested portions of the jökulhlaup route are larger and more closely spaced than those along adjacent, otherwise comparable stream channels that have not recently experienced a jökulhlaup; (ii) logjams are not randomly located along the jökulhlaup route, but instead reflect specific conditions of channel and valley geometry and flood hydraulics; and (iii) the presence of logjams facilitated significant erosional and depositional effects. This paper documents a sequence of events in which outburst floodwaters enhance bank erosion and recruitment of wood into the channel, and thus the formation of large logjams. These logjams sufficiently deflect flow to create substantial overbank deposition in areas of the valley bottom not commonly accessed by normal snowmelt peak discharges, and through this process promote valley-bottom aggradation and sediment storage. Changes in the occurrence of glacier outburst floods thus have the potential to alter the rate and magnitude of valley-bottom dynamics in these environments, which is particularly relevant given predictions of worldwide global warming and glacial retreat. Processes observed at this field site likely occur in other forested catchments with headwater glaciers.  相似文献   

12.
沙漠沟谷暴雨洪水侵蚀产沙特征   总被引:1,自引:1,他引:0  
在半干旱区的季节性沙漠沟谷,暴雨引发的洪水过程侵蚀产沙强度大,水土流失严重,对区域及下游河道生态造成严重威胁。以毛布拉孔兑的支沟苏达尔沟为研究对象,以苏达尔沟2011—2015年6次暴雨洪水事件的观测数据为基础,分析洪水流量、泥沙浓度及地表沉积物粒度特征,给出暴雨洪水侵蚀产沙输沙特征。结果表明:观测期间暴雨洪水侵蚀产沙量平均每次约37.69×10~4t,产沙模数为0.57×10~4t·km-2;其中最大的洪水事件130721号暴雨洪水过程侵蚀产沙量高达90.47×10~4t,产沙模数达1.36×10~4t·km-2。流域总侵蚀产沙以0.25~0.063 mm泥沙为主,约占总侵蚀量74%。洪水总侵蚀产沙量随暴雨产流强度增强而增加,同时下游沙漠沙地段产沙贡献比重也随之增加,风沙贡献也相应增大。坡面侵蚀约占暴雨洪水总侵蚀的4.37%,且主要集中在上游砒砂岩坡面。  相似文献   

13.
The downstream fining of fluvial sediments is a fundamental tenet of drainage systems and, for decades, has been the subject of considerable research. Most of this research has focused on variability in channel-bed material. Other sedimentological components such as channel bars and banks, however, represent distinctively different processes occurring at various flow magnitudes and durations and thus provide an opportunity to examine a more comprehensive set of controls on the larger fluvial system. This study analyses downstream patterns of sediment size and composition for channel-bed material, bars, and banks in the Llano River watershed (11,568 km2) in central Texas, USA.Fluvial deposits in the study area were characterized through field, laboratory, and statistical analyses and standard sedimentary indices (d16, d50, d84, sorting) were computed. Two hundred thirty-eight sediment samples were collected at 15 sites along the main-stem channel with sampling occurring at the low-flow channel (thalweg), lateral bars, banks, and overbank locations. Channel-bar deposits are characterized by a downstream reduction in particle size, but low-flow-channel deposits have a substantially weaker trend, a discrepancy possibly attributed to uniformity and continuity of hydraulic sorting mechanisms during moderate and high flows. Channel-bar deposits reveal an abrupt downstream reduction in gravel size in the upper watershed, which is attributed to an increase in drainage area. Further, an abrupt gravel-to-sand transition occurs immediately downstream of a distinct lithologic change from mostly carbonate rocks to igneous and metamorphic rocks. The downstream decrease in channel-bar particle size occurs despite an increasingly constricted alluvial valley, commonly associated with greater unit stream power and relatively coarse sediment. Contrasting with channel-bed material, particle size of channel banks increases downstream, which is attributed to the addition of sand-sized sediment from igneous and metamorphic rocks. The consideration of distinctive sedimentological components of a dynamic fluvial system represents a more comprehensive and nuanced study of the topic of downstream sediment trends than prior studies, which is important to a range of engineering, biological, and planning issues at the watershed scale.  相似文献   

14.
根据IKONOS和Qu ick B ird影像解译和实地调查,对拉萨河下游河谷区风沙源分布特征、沙源粒度特征、植被特征以及人类活动的作用进行了探讨。结果表明,受大中小尺度风场的影响,风沙源地沿河谷两侧呈小面积零星分布在多个地貌部位;河流冲积物是最主要的沙源,沙源粒径90%以上分布在0.25 mm以下,以细沙、极细沙和粘粒成分为主,平均含量占60.69%,易于发生风沙活动;风沙活动是影响沙生植被的主导因素,植物种类和盖度能很好反映沙源地的稳定程度;特别在流动沙地和半流动沙地上,植被演替朝着有利于风沙活动发展的方向进行,是风沙活动的主要驱动因素之一,也是风沙活动不断加剧的产物。尽管自然因素是该区域风沙活动的主要成因,人类活动对其发展起到了强化作用。  相似文献   

15.
豫北延津的风沙问题   总被引:4,自引:2,他引:2  
半湿润地区的区域性风沙问题是制约经济发展的环境因子之一。通过对豫北延津地区历史上黄河改道泛溢与沙物质沉积过程的分析、风沙问题历史与现状的对比表明,历史时期风沙问题以流沙大规模活动形成各种风蚀风积地貌为特征;而现代风沙问题以沙地在冬春季的片状风蚀和夏秋季的恢复逆转交替为特点,指出本区以季相性为特征的风沙活动及风沙地貌发育规模的有限性。风沙问题的整治关键已不是大规模治理流沙,而是建立有效的防护体系,防止沙质农田土壤风蚀,运用现代技术手段进行沙地高效农业开发。  相似文献   

16.
石羊河下游沙漠化的自然因素和人为因素及其位移   总被引:32,自引:5,他引:27  
石羊河流域下游自汉代以来逐渐沙漠化,生态环境退化。其自然因素主要有:地形特征构筑了封闭的内陆河流域;水蚀是内陆河流域沙漠化的开始,上游集流区为中、下游提供了丰富的沙源;水资源的减少使得中、下游大面积湖积沙沙漠化。人为因素主要有:农业开发是引起水资源减少的关键,巩固边塞是引起河西走廊农业开发和耕地面积扩大的主要原因;战争对石羊河流域生态退化的影响不可忽视。石羊河下游民勤县在自汉代以来沙漠化和生态环境退化的漫长历史过程中,人为因素不断增强。20世纪中期以来,尤其是1958年红崖山水库建成以来,沙漠化过程中的人为因素占据了主导地位。  相似文献   

17.
River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003–2014, the d > 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008–2014 was less than during 2003–2007; (3) after TGP impoundment, there was some restoration in d < 0.125 mm (fine sand) sediment load, however, it was lower than the pre-impoundment average; (4) due to riverbed compensation, the d > 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400×104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d < 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003–2007 and 2008–2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion, lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003–2007, and coarse and fine erosion in 2008–2014. This difference was controlled by flood duration and number at Luoshan Station.  相似文献   

18.
贵南县木格滩流沙区是共和盆地最大的连续沙带,当地现代沙漠化是由古沙丘活化形成的,但古沙丘活化过程尚不明确。通过实地考察、遥感卫星影像解译、DEM高程数据分析、沉积地层分析及粒度测试,对贵南县土地沙漠化驱动机制从微观层面进行了研究。结果表明:古沙丘表面发育良好的草皮层及粉沙土层是古沙丘的保护层,保护层完整性的破坏,使下伏松散古风成沙暴露,遭受风蚀,形成侧向凹槽,引起草皮层或粉沙土层崩塌,使更多的古风成沙暴露。风力侵蚀与重力侵蚀交替进行,导致风蚀坑不断扩大,相互连接成片,形成流动沙丘。  相似文献   

19.
内蒙古嘎顺诺尔湖泊沉积物磁化率与粒度的古环境意义   总被引:3,自引:0,他引:3  
湖泊沉积物磁化率和粒度已被广泛地应用于古环境和古气候研究,但在不同地区两者的关系不同,一般与磁性矿物来源、种类和赋存粒级有关。查明磁性矿物来源和赋存状态是利用粒度和磁化率恢复古环境的重要基础。通过测定干旱区嘎顺诺尔GXN剖面湖泊沉积物的磁化率与粒度及两者的相关关系,结合代表性样品的岩石磁学特征,揭示此类地区湖泊沉积物磁性矿物来源和赋存状态,探讨它们在干旱区湖泊沉积物中所反映的环境变化信息。结果显示,剖面下部(200~105 cm)和上部(36~0 cm)沉积物磁化率与粗砂含量呈正相关,中部(105~36 cm)与粉砂含量呈正相关,表明磁性矿物主要富集于粗颗粒和较粗颗粒组分中。剖面下部和中部沉积物以顺磁性矿物为主,含少量亚铁磁性矿物(如磁铁矿+磁赤铁矿),含少量顺磁性矿物;剖面上部沉积物以亚铁磁性矿物为主(如磁赤铁矿+磁铁矿),含少量顺磁性矿物。根据嘎顺诺尔晚全新世湖泊沉积物剖面的岩性、磁化率和粒度组合特征,可将其划分为河漫滩相沉积(200~105 cm)、浅湖相沉积(105~36 cm)和滨浅湖相沉积(36~0 cm)3个阶段。该湖粒度组分中<4 μm和4~64 μm颗粒主要反映了湖泊水动力的变化,受碎屑物来源和水动力条件的控制;而河漫滩相中>64 μm粗颗粒组分的峰值是风力作用的结果。河漫滩相及滨浅湖相的磁化率高值则指示了湖面较低,水动力较强,有较多的磁性矿物随粗颗粒入湖;浅湖相的磁化率低值则指示该时期湖面较高,水动力较弱,磁性矿物随入湖粗颗粒含量的减少而降低。  相似文献   

20.
对长江中游地区定山-太平断面上砂山砂与下风向5个黄土剖面黄土进行了详细的粒度分析,并与其他地区黄土进行对比。结果表明:(1)粒度象和粒度参数特点显示赣北定山-太平断面砂山下风向的黄土状土为风积成土;(2)定山-太平断面的砂山砂-砂山淤泥-黄土粒度特征的渐变过渡,指示了其沉积上的渐变过渡关系。结合区域各沉积相的年代序列认为,末次间冰期以来,长江河谷、漫滩等松散碎屑物在冬季风分选下,粗颗粒物质以砂山形式在其下风向不远处沉积,而剥离出的细颗粒物质则被颠扬到较远的下风向以黄土的形式堆积,从而在区域上形成一个以砂山砂和黄土为主的风沙-风尘沉积体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号