首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In the metamorphosed manganese oxide ores of India, braunite is ubiquitous in all assemblages from chlorite to sillimanite grades. Chemical analyses of braunite from different prograde assemblages confirm the presence of a fixed R2+ (=Mn2++Mg+Ca) SiO3 molecule in the mineral. Element partitioning between coexisting braunite and bixbyite indicates a near-ideal mixing of Fe+3/ -Mn+3 in the phases. This also indicates that braunite became relatively ferrian while equilibrating with associated phases such as bixbyite, hollandite and jacobsite during prograde reactions. Petrogenetic studies show that as a general trend, prograde lower oxide phases appeared by deoxidation of higher oxide phases. But braunite, a more reduced phase than bixbyite, appeared early from deoxidation of pyrolusite in presence of quartz. Bixbyite could appear later from the reacting pyrolusite-braunite-quartz assemblage. Inferred mineral reaction paths and the general trend of pro-grade deoxidation reactions suggest that the composition of ambient fluid phase was internally buffered during metamorphism.  相似文献   

2.
A Mesoarchean greenstone belt (3.5–3.0 Ga) in the western part of the East Indian Shield comprising the Iron Ore Group of the Noamundi basin contains economic resources of both iron and manganese ores in the NNE plunging regional synclinorium. Manganese mineralization in the central and eastern parts of this synclinorium, particularly in Joda–Noamundi sector, has taken place in multiple cycles starting from syngenetic sedimentary and exhalative type through mobilization and remobilization in different stages of tectonism, deformation and hydrothermal activities to latest lateritic or supergene type. A relatively high temperature metamorphic jacobsite–hausmannite–bixbyite–braunite assemblage, low temperature hydrothermal pyrolusite–psilomelane–hollandite assemblage and supergene pyrolusite–manganomelane–groutite–polianite assemblage are present and were formed by recycling of manganese in different stages of mineralization. A detailed structural study of the manganese ore bodies as well as their ore petrographic and mineralogical characteristics with mineral chemistry has revealed systematic mineralization and their relation to deformational phases. Such recycling of manganese and its structural control of mineralization in different phases is unique of its kind in comparison with other Archean manganese deposits in the world.  相似文献   

3.
In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics.The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz.The chemical composition of the ferromanganese ores in Hazara suggests that the Mn–Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is suggested that the Fe–Mn ores of the Hazara area originated from a mixed hydrothermal–hydrogenetic source in shallow water in a ontinental shelf environment due to the transgression and regression of the sea, while the Mn ores of Waziristan were formed at sea-floor spreading centers within the Neo-Tethys Ocean, and were later obducted as part of the Waziristan ophiolite complex.  相似文献   

4.
In a newly found type of quartz vein cross-cutting the famous "viridine"-bearing phyllites at Le Coreux, hollandite, ideally BaMn8O16, was discovered for the first time at this locality and in Belgium. Because the crystals contain up to 60 mol% of the Sr end member, this is also the second occurrence of strontiomelane. The coexisting "viridine" (= kanonaite) contains the highest amount (88 mol%) of the ideal end member MnAlSiO5 ever found worldwide. The hollandite-type minerals are intimately intergrown with braunite containing appreciable Ca and Mg. Ba-bearing muscovite, Fe-poor excess-Al clinochlore (not quite trioctahedral), and albite are the remaining accessory minerals in the dominant quartz matrix. Microprobe analyses of all phases show rather extreme element fractionations: nearly all K is located in muscovite and none in the hollandite phase despite the existence of the end member KMn8O16 (cryptomelane). Similarly, nearly all Na is in albite and not in hollandite (no NaMn8O16=manjiroite component). Nearly all Mn resides in the two oxide phases and in kanonaite. Mg is strongly fractionated into chlorite. The small amounts of Fe and Ti present are predominantly partitioned into the hollandite phase, which also accommodates most of the Ba and Sr. Indeed, the hollandite phase is stabilized by the latter two elements relative to other Mn oxides. Kanonaite is stabilized by Al. Although no requisite sites are available in its crystal structure, braunite always contains small amounts of Ba and Sr. However, the Sr/(Sr+Ba) ratios in braunite are spurious and unrelated to those of the directly adjoining hollandite phases The conditions of formation of these veins may be well below 300 °C at low pressures (1-2 kbar), in agreement with the experimental results that the maximum Mn contents in kanonaite increase with falling temperatures.  相似文献   

5.
High-grade fault-hosted manganese deposits at the Woodie Woodie Mine, East Pilbara, are predominantly hydrothermal in origin with a late supergene overprint. The dominant manganese minerals are pyrolusite, braunite, and cryptomelane. The ore bodies are located on, or near the unconformities between the Neoarchean Carawine Dolomite and the Paleoproterozoic Pinjian Chert breccia (weathering product of Carawine Dolomite), and sedimentary units of the overlying ca 1300–1100 Ma Manganese Group. Stratabound manganese is typically located above or adjacent to steep fault-hosted manganese. The ore bodies range in size from 0.2 to 5.5 Mt with an average of 0.5 Mt. Historically, over 35 Mt of manganese has been mined at Woodie Woodie, and current ore resources are 29.94 Mt at 39.94% Mn, 6.96% Fe (resource and reserves statement, June 2011, Consolidated Minerals Pty Ltd).Manganese mineralization at Woodie Woodie is related to northwest–southeast directed extension and basin formation during the Mesoproterozoic. Basin architecture is generally well preserved and major manganese occurrences are localised along growth faults which down-throw the Pinjian Chert Breccia into local extensional basins. Manganese ore bodies are typically located on steep 2nd and 3rd order structures that extend off the major growth faults. Mineralized structures display a dominant northeast-trend reflecting the direction of maximum dilation during northwest–southeast extension.A paragenetic sequence is identified for the manganese ore at Woodie Woodie, with early hydrothermal braunite–pyrolusite–cryptomelane–todorokite–hausmannite, overprinted by late supergene oxides. Preliminary fluid inclusion studies in quartz crystals intergrown with pyrolusite and cryptomelane indicate that primary and pseudosecondary inclusions display a range of salinities from 1 to 18 eq. wt.% NaCl and trapping temperatures estimated to be from 220º to 290º at 1 kbar pressure.A lead–manganese oxide (coronadite) is common in manganese ores at Woodie Woodie, and Pb-isotope studies of 40 lead-rich ore samples from 16 pits indicate mineralization occurred within an age range of 955–1100 Ma. A mixed source is suggested for the lead, but was predominantly basalts and/or volcanogenic sedimentary units (e.g., Jeerinah Formation) of the ca 2700 Ma Fortescue Group. The typically high Mn:Fe ratios and enrichment in elements such as Pb, As, Cu, Mo, Zn are consistent with a dominantly hydrothermal origin for the manganese at Woodie Woodie. Supergene manganese is distinguished from hypogene manganese by a marked enrichment in REE in the supergene manganese.An early structural framework, established during Neoarchean rifting, provides a major structural control on manganese ore distribution. The Woodie Woodie mine corridor is located in a zone of oblique strike-slip extension on major northwest-trending transform faults and north-trending oblique normal faults. A major transform structure at the southern end of the Woodie Woodie mine corridor (Jewel-Southwest Fault Zone) likely acted as a major fluid conduit for manganese-bearing hydrothermal fluids and this would account for the concentration of significant manganese ore occurrences to the north and south of this structure.  相似文献   

6.
The Kajlidongri manganese deposit, Madhya Pradesh, India contains braunite belonging to at least two different parageneses, i.e. a fine-grained, metamorphic type and a younger, coarser-grained, hydrothermal type. Microanalyses of braunite from these paragenetic types indicate considerable variations in iron content from zero to 32.7% Fe3O3, which the writers consider is due to varying proportions of braunite I and bixbyite modules in polysomatic braunite.  相似文献   

7.
随着我国钢铁工业和化学工业的迅猛发展,对锰矿资源的需求,日益增加.梅县锰矿公司对该县的锰矿地质和锰矿生产做了大量工作.在前人工作的基础上,我们在锰矿资源的调研中,曾对广东省梅县的宝山岗、白沙坪、桃尧大华、宝坑、仙水塘、磔角坑、车陂等地的锰矿体、进行过采样工作.经室内鉴定后、梅县的锰矿石有优质的放电锰矿石和冶金用锰矿石、矿床规模属于中小型.梅县锰矿资源的生产,继续已有20多年的历史,在矿床的质和量方面尚需做更深入的研究,以便为矿山开采和锰矿生产提供更充分的依据.本文是对锰矿物质成分初步研究的部分结果.  相似文献   

8.
Summary ?Rocks containing braunite from the Ossa-Morena central belt (Iberian Massif, SW Spain) have been studied; these include nodules and layers of braunite (association I), Mn-slates (association II) and Mn-metatuffs (associations III and IV). Geochemical features of braunite nodules such as Mn/Fe ratios around 2, positive Ce-anomalies and good correlations among Mn, Fe, Co, Cu and REE contents indicate that the protolith of the braunite-nodules was precipitated from oxidising sea water. Greenschist facies Hercynian metamorphism reduced initial Mn4+ to Mn3+ and Mn2+. High initial fO2 of oxide beds (association I) limited reduction to the formation of braunite. Reduction continued until the formation of garnet + piemontite (associations II and III), and pyroxmangite + pyrophanite (association IV). Ti-rich braunites (up to 6.8% of TiO2) occur in slates and metatuffs in which the (Mn + Fe)/Ti ratio of the whole rock is lower than 30, while braunites have lower Ti contents in slates and metatuffs with (Mn + Fe)/Ti ratios around 90. Fe-rich braunite crystallized in rocks with Mn2+ oxide and silicate where low Mn3+/Mn2+ in the whole rock facilitated substitution of Fe3+ for Mn3+. Received January 30, 2002; revised version accepted May 7, 2002 Published online November 22, 2002  相似文献   

9.
The Mary Valley manganese deposits exhibit mineralogy and textures characteristic of at least four parageneses. The deposits consist mainly of isolated occurrences of braunite, together with a number of lower and higher valency manganese oxides, and manganese silicates, in bedded radiolarian cherts and jaspers of Permian age. The parageneses are: (a) Braunite — quartz (primary), (b) Braunite — hausmannite — spessartine — tephroite — quartz (metamorphic). (c) Hydrated manganese silicates — barite — braunite — hausmannite (hydrothermal veins), (d) Tetravalent manganese oxides (pyrolusite, cryptomelane, manjiroite, nsutite) (supergene). The primary mineralisation is interpreted as the result of the geochemical separation of Mn from Fe in a submarine exhalative system, and the precipitation of Mn as oxide within bedded radiolarian oozes and submarine lavas. During diagenesis this hydrothermal manganese oxide reacted with silica to produce primary braunite. The later geological of evolution of this volcanogenicsedimentary deposit involved metamorphism, hydrothermal veining by remobilised manganese, and supergene enrichment.  相似文献   

10.
The Neoproterozoic magnetite–apatite–hematite–pyrolusite–jaspilite deposits in the Bafq mining district (BMD) contain more than 1.7 Gt ores with an average grade of 50 wt.% Fe and 0.01 to 7.78 wt.% P and were probably formed between 635 and 547 Ma in a riftogenic felsic submarine exhalative sequence of the Esfordi Formation. The ore zones occur in proximal zone of magnetite-rich albitized rhyolite (keratophyres), interdistal zone of rhyolitic tuff–tuffaceous sediments and distal zone of pyrolusite–jaspilite. These sequences are covered by the diamictites and cap carbonates. The BIFs are linked to the altered rhyolites–rhyodacites, jaspilites and diamictites and contain magnetite, hematite and apatite. The presence of Spriggina, Dickinsonia, Medusites and Persimedusites chahgazensis (Sennewald and Krüger, 1979; Hahn and, Pflug; McCall, 2006) in the Kushk shale member of the Esfordi Formation conforms to the Australian fauna of the Ediacaran period (635–540). This relative age is supported by some reliable Pb isotopic data (635–547 Ma) on galena, monazite and apatite (Huckriede et al., 1962; Torab, 2008; Stosch et al., 2011). The most frequent structures–textures in the ore zones include felsic autobrecciation, massive, colloidal, banded, detrital and glaciogenic. The BIFs are highlighted by high values of LREE fractionation and no significant Eu and Ce anomalies. The ores show high values of Fe2O3 (14–60%), and SiO2 (4–34%), and low contents of Al (3.32%), Cr (21.48 ppm), Co (42.82 ppm), Ni (125 ppm), V (868 ppm), and Ti (0.13%) similar to those of the Ediacaran–Rapitan BIFs. The cap carbonates show depletion in δ13C, with a range from − 0.43 to − 6.6 per mil and then return to near excursion of about + 2.97‰ in the Lower Cambrian carbonates. These are followed by δ18O values, which range from − 6.64 to − 11.86‰. The presence of jaspilites, diamictites, C and O isotopic signatures, REE patterns, and immobile element relationships highlights a glaciogenic BIF. Importantly, the glaciogenic structures–textures and jaspilites do not support the misconception of the previously proposed magmatic–carbonatitic and metasomatic–hydrothermal IOCG–Kiruna ore deposits.  相似文献   

11.
Isotope ratios of U and Pb were measured in two types of Mn nodules from the Cambrian Timna Formation, Israel. Type A nodules are mainly composed of pyrolusite and hollandite, with Mn, Ba, Pb and U concentrations of 30–60%, 0.2–2.5%, 0.2–1.0% and 500–3500 ppm, respectively, whereas type B nodules were formed by alteration of the former, and contain mainly coronadite, with Mn, Ba, Pb and U concentrations of 7–48%, 0.2–7%, 0.6–5% and 10–160 ppm, respectively. The isotopic composition of U and Pb was measured by MC-ICP-MS on Mn-rich solutions (up to 100 mg/L) without and with chromatographic separation. The values for the 207/206 and 208/206 ratios have been determined with precisions of up to 50 ppm and those of 206/204, 207/204 and 208/204 – up to 200 ppm. The values for the 234/238 ratios have been determined with precisions of 0.4–1%. The results of the separated and unseparated solutions were shown to be equal within the error. Thus there is no significant matrix effect while measuring U and Pb in Mn rich solution using the MC-ICP-MS.The isotopic composition of Pb and U support the distinction between the two types of Mn nodules. Type A nodules have a wide range of 206Pb/204Pb ratios (18.278–19.776), and an almost constant ratio of 208Pb/204Pb. In contrast, type B nodules have almost constant 206Pb/204Pb ratios and a wide range of 208Pb/204Pb ratios (37.986–38.079). Type A nodules form a linear array on a 207Pb/204Pb vs 206Pb/204Pb diagram, while type B nodules form a tight group characterized by lower Pb isotope ratios that slightly deviate from the type A array. The 234U/238U ratio differs between the two types of nodules; type A nodules exhibit a uniform and close to equilibrium 234U/238U ratio while type B nodules show a wide range of 234U/238U ratios above and below the equilibrium value. The isotopic composition of Pb in type A nodules might reflect Pb contributions from plutonic rock weathering, exposed at the time of deposition or later, to the Cambrian sea. These nodules have remained unaffected by processes that occurred since the Cambrian. The higher 208Pb/204Pb values of type B indicate that these nodules were formed from a Th-enriched solution probably during epigenetic processes which occurred also during the last 1 Ma.Thus the two isotopic systems of U and Pb can record formation, leaching and redeposition of Mn ores.  相似文献   

12.
The photoreduction efficiency of toxic hexavalent chromium into non-toxic trivalent chromium was studied using local low-cost material and modern technology. The materials involved different iron–titanium oxide nanopowders synthesized via simple hydrothermal–hydrolysis process. X-ray diffraction and high-resolution transmission electron microscope were employed to study the structural properties of the as-prepared samples. The effects of molar ratio (Fe/Ti) and hydrothermal temperature on spectroscopic properties have been investigated using Fourier transform infrared FT-IR spectroscopy. The photocatalytic performance of hexavalent chromium was systematically studied at various conditions including initial concentration of Cr(VI), hydrothermal temperature and Fe/Ti ratios of mixed iron–titanium oxide powders. It has been found that the highest photoreduction efficiencies of Cr(VI) were 95.7 and 86.2% at initial concentrations 10 and 60 ppm of Cr(VI), respectively. The synthesized mixed Fe2O3–TiO2 photocatalyst exhibited higher efficiency of about 88% under visible light irradiation. The as-prepared mixed oxide catalyst exhibited high photocatalytic conversion efficiency and recycling stability in comparison with different commercial catalysts.  相似文献   

13.
Résumé Les minéralisations manganésifères de Falotta et de Parsettens (Grisons-Suisse) se manifestent dans les radiolarites du Jurassique supérieur et elles sont déposées sur les ophiolites du domaine pennique. Ce minerai présente des microstructures botryoïdales caractéristiques des nodules polymétalliques. Les phases minéralogiques des nodules, sous l'effet du métamorphisme alpin, se transforment de façon progressive en braunite faiblement cristallisée (avec un important excès en SiO2) à la périphérie des structures botryoïdales; par contre, vers la partie centrale de ces structures, la braunite est souvent largement cristallisée (sa teneur en SiO2 est normale). De fines veinules constituées de termes intermédiaires de la série isostructurale de la cryptomélanehollandite recoupent la minéralisation de braunite et indiquent la deuxième étape dans l'évolution du minerai oxydé de Falotta et Parsettens. La troisième étape est représentée par la présence de la todorokite et de la birnessite due à l'oxydation des veinules postérieures de rhodonite. Ces deux oxydes n'ont aucun rapport direct avec la minéralisation primaire. L'existence de structures sédimentaires et volcaniques non déformées dans les écailles supérieures de la nappe de Platta permet d'expliquer la conservation de microstructures primaires de nodules polymétalliques dans le minerai de braunite. La variation de la teneur en Sr2+ observée lorsque l'on va de Falotta vers Parsettens, dans les termes intermédiaires de la série isostructurale de la cryptomélane-hollandite, ainsi que la déstabilisation de la braunite au voisinage des veinules, seraient liées à la différence du degré de déformation entre ces deux zones. Il est important de remarquer que les paramètres géochimiques Fe/Mn ou Mn/Co&+Cu&+Ni, couramment utilisés dans les travaux sur les nodules polymétalliques, sont inadéquats même dans les structures les mieux préservées.
The manganese ores of Falotta and Parsettens (Oberhalbstein, Grison Canton, Switzerland) are enclosed in Upper Jurassic radiolarites and overlay ophiolites of Upper Pennine nappes. These ores exhibit the botryoidal microstructures typical of manganese nodules. The mineralogical components of the outerpart of these nodules, which were affected by alpine metamorphism — were first transformed gradually into a poorly crystallized braunite (with a large excess of SiO2). In contrast, the inner part of the nodules is composed of well-crystallized braunite with normal (10 wt%) contents of SiO2. Narrow veinlets with intermediate members of the cryptomelane-hollandite isostructural series crosscut the braunite mineralization, and represent a secondary paragenesis. A third step is marked by the appearance of todorokite and birnessite through the oxidation of the rhodonite veinlets. This is apparently the first observation of primary botryoidal microstructures in these nodules — and the first observation of braunite microstructures in a metamorphic area. The occurrence of undeformed volcanic and sedimentary textures in the upper Platta thrust sheets explains the preservation of these primary structures in these nodules. Moreover, the increase in flattening and intensive schistosity from Falotta to Parsettens may be related with the enrichment of Sr2+ in the intermediate members of the cryptomelane-hollandite series and with the destabilization of the braunite along the veinlets. It must also be pointed out that the Fe/Mn or Mn/Co&+Cu&+Ni ratios, currently used in research on manganese nodules, seem to be inadequate even for the Falotta ore, in which the best-preserved primary microstructures exist. In Falotta as in Parsettens, todorokite and birnessite come from the late rhodonite veinlets and are not related with the primary ore.
  相似文献   

14.
Early stages in the geologic evolution of the central eastern desert of Egypt (CED) reflect an intense episode of ensimatic volcanic activity similar to modern magmatism of the ocean floors and island arcs. This paper reports results from studies of the petrology and petrogenesis, and interprets the significance of these Late Precambrian volcanic rocks.A three-fold stratigraphy is preserved in the basement of the CED. A basal section of oceanic crust includes ultramafics, gabbros and pillowed basalts. These older metavolcanics (OMV) are conformably succeeded by dominantly volcanogenic metasediments, which are in turn succeeded by a dominantly andesitic, calc-alkaline sequence of younger metavolcanics (YMV). The OMV and YMV are largely restricted to the CED in Egypt, but analogous terranes are found in northern Arabia. (40–400 ppm) and Ni (30–260 ppm). They are poor in K2O (0.05–0.92%), Rb (0.3–5.0 ppm) and Ba (11–89 ppm). On Ti-Zr-Cr-V-Ni-P discriminant diagrams, the OMV plot in the field of modern abyssal tholeiites. High K/Rb (450–1800) and light REE depletions support this inference, although K/Ba (25–45) is lower than modern mid-ocean ridge basalts (MORB). The sum of OMV geochemical characteristics requires that these magmas were derived by the fractional fusion of the mantle. It is suggested that the OMV were generated by 20–25% fractional melting of previously depleted mantle at depths of less than 60 km. Relatively little fractionation accompanied ascent to the surface, where the OMV were erupted in a primitive crustal environment, either a small oceanic rift or a back-arc basin.Metamorphism of the YMV resulted in little elemental redistribution. These andesites have sub-alkaline clinopyroxenes and major-element geochemical characteristics indistinguishable from modern calc-alkaline andesites. YMV andesites in the central and western CED have K/Rb = 400–600, K/Ba = 20–40 and are light REE-enriched and heavy REE depleted. High concentrations of Cr (50–150 ppm) and Ni (20–100 ppm) and low initial 87Sr/86Sr ratios (0.7028–0.7030) indicate that these magmas were generated by melting in the mantle. Modelling studies and consideration of experimental data indicate that these andesites were formed by 2–10% fractional fusion of hydrous, undepleted, garnet therzolite at depths of 65 km or more in the mantle.The data show that an intense episode of instability, convection, and widespread melting occurred in the mantle beneath Afro-Arabia at the end of the Precambrian.  相似文献   

15.
The Godar Sabz Mn deposit is located in the Nain-Baft ophiolitic belt in the northeast margin of the Sanandaj-Sirjan zone, Iran. The Nain-Baft back-arc extensional basin resulted from the subduction of the oceanic crust of Neo-Tethys under the southern margin of the Iranian Plate in the Early Cretaceous and hosts several mineral deposits, including volcanogenic massive sulfide, chromite, and Mn deposits. The mineralization in the Godar Sabz Mn deposit occurred predominantly as stratabound, massive, banded, layered, and lenticular orebodies in radiolarian cherts within Baft ophiolitic complex. The main ore minerals are pyrolusite, braunite, with minor amounts of todorokite. The significant geochemical features of the Godar Sabz ores, such as the high MnO content (21.82–80.65 wt%, average = 64.91 wt%), high Mn/Fe (average = 278), Si/Al ratios (average = 92.6), high Ba contents (average = 4495.6 ppm), the low average contents of Cu (81.8 ppm), Ni (106.2 ppm), Co (29.4 ppm), LREE > HREE, and trace element discrimination diagrams indicate a hydrothermal-exhalative source for mineralization. Chondrite-normalized REE patterns of studied ores have negative Ce and slightly positive Eu anomalies, which are similar to hydrothermal Mn deposits. The REE patterns of Mn ores coincide with basaltic lavas, suggesting that the Mn-mineralization in the Godar Sabz deposit was genetically related to the leaching of basaltic lavas. The Godar Sabz Mn deposit has many similarities with the main characteristics of the hydrothermal exhalative Mn deposits, including tectonic setting, host rock type, the morphology of orebodies, ore textures, mineralogy, and chemical features of ores.  相似文献   

16.
A new occurrence of Mn-rich rocks was discovered within the high-pressure/low-temperature metamorphic rocks on the Palos peninsula of Syros (Greece). Near the summit of Mount Príonas, a meta-conglomerate consists of calcite (~63 wt%), pink manganian phengite, blue–purple manganian aegirine–jadeite, microcline, albite and quartz. In addition, it contains abundant braunite-rich aggregates (up to ~1.5 cm in diameter) that include hollandite [(Ba0.98–1.02K<0.01Na<0.02Ca<0.03) (Mn 1.02–1.52 3+ Fe 0.38–0.88 3+ Ti0.29–0.92Mn 5.11–5.76 4+ )O16], barite and manganian hematite. Due to metamorphic recrystallization and deformation, the contacts between clasts and matrix are blurred and most clasts have lost their identity. In back-scattered electron images, many aegirine–jadeite grains appear patchy and show variable jadeite contents (Jd10–67). These pyroxenes occur in contact with either quartz or albite. Manganian phengite (3.41–3.49 Si per 11 oxygen anions) is of the 3T type and contains 1.4–2.2 wt% of Mn2O3. At the known PT conditions of high-pressure metamorphism on Syros (~1.4 GPa/ 470 °C), the mineral sub-assemblage braunite + quartz + calcite (former aragonite) suggests high oxygen fugacities relative to the HM buffer (+7 ≤ ?fO2 ≤ + 17) and relatively high CO2 fugacities. The exact origin of the conglomerate is not known, but it is assumed that the Fe–Mn-rich and the calcite-rich particles originated from different sources. Braunite has rather low contents of Cu (~0.19 wt%) and the concentrations of Co, Ni and Zn are less than 0.09 wt%. Hollandite shows even lower concentrations of these elements. Furthermore, the bulk-rock compositions of two samples are characterized by low contents of Cu, Co and Ni, suggesting a hydrothermal origin of the manganese ore. Most likely, these Fe–Mn–Si oxyhydroxide deposits consisted of ferrihydrite, todorokite, birnessite, amorphous silica (opal-A) and nontronite. Al/(Al + Fe + Mn) ratios of 0.355 and 0.600 suggest the presence of an aluminosilicate detrital component.  相似文献   

17.
Résumé La braunite du gisement de St. Marcel-Praborna, dans le Val d'Aoste (Italie) présente un certain nombre de faciès et générations caractéristiques. Chacun de ces faciès possède non seulement des particularités morphologiques mais aussi des traits géochimiques propres.La braunite en filigrane représente la première génération de braunite dans le gisement et certains de ses traits géochimiques semblent hérités des séries originelles.Le faciès de braunite compacte représente la braunite presque pure, tandis que la braunite en filigrane renferme tout à la fois du Ca, du Fe, du Ti, ainsi que des traces en éléments de transition (Ni notamment).L'importance de la teneur en MnO2 du gisement nous parait étroitement liée à l'enrichissement tardif en K+ du gisement.Les rapports paragénétiques et l'évolution des oxydes manganésifères de St. Marcel sont des traits que l'on retrouve dans les oxydes des nodules polymétalliques ayant subi les effets du métamorphisme.L'oxydation des silicates et carbonates, souvent due aux fracturations tardives, est négligeable dans ce gisement.
Braunite in the metamorphosed Mn ore-body at St. Marcel-Praborna Val d'Aosta, Italy, occurs in several textural forms, each characterised by particular morphological or chemical features.Sponge-like (filigran-texture) braunite contains Ca, Fe, Ti and traces of some transition elements, especially Ni. This form represents the first braunite generation in this deposit and some of its chemical features are inherited by its transformation products.A second generation of braunite is compact and idioblastic and has almost the pure end-member chemical composition.The significant MnO2 content of this deposit seems to be closely related to a late enrichment in K.The paragenetic relationships and the evolution of the Mn-oxides of St. Marcel have the characteristics of oxides in those polymetallic nodules which have been metamorphosed.Oxidation of silicates and carbonates, often due to late fracturing, is negligible in this deposit.
  相似文献   

18.
Phase relations in the system KAlSi3O8-NaAlSi 3O8 have been examined at pressures of 5–23 GPa and temperatures of 700–1200° C. KAlSi3O8 sanidine first dissociates into a mixture of wadeite-type K2Si4O9, kyanite and coesite at 6–7 GPa, which further recombines into KAlSi3O8 hollandite at 9–10 GPa. In contrast, NaAlSi3O8 hollandite is not stable at 800–1200° C near 23 GPa, where the mixture of jadeite plus stishovite directly changes into the assemblage of calcium ferrite-type NaAlSiO4 plus stishovite. Phase relations in the system KAlSi3O8-NaAlSi3O8 at 1000° C show that NaAlSi3O8 component gradually dissolves into hollandite with increasing pressure. The maximum solubility of NaAlSi3O8 in hollandite at 1000° C was about 40 mol% at 22.5 GPa, above which it decreases with pressure. Unit cell volume of the hollandite solid solution decreases with increasing NaAlSi3O8 component. The hollandite solid solution in this system may be an important candidate as a host mineral of K and Na in the uppermost lower mantle  相似文献   

19.
Experimental investigations between 800 ° to 1,100 ° C yielded no evidence for extensive substitution of Mn2++Si4+2Mn3+ in braunite, leading to a complete solid solution series between partridgeite (Mn2O3) and braunites with silica contents up to 40 wt. % as proposed by Muan (1959a, b). In the presence of excess manganese braunite of nearly ideal composition coexists at 800 ° C with partridgeite and at T1,000 ° C with hausmannite (Mn3O4). At 800 ° C and 1,000 ° C braunite coexists, in the presence of excess silica, with a SiO2-polymorph and at 1,100 ° C with rhodonite (MnSiO3). Quantitative analysis of the X-ray patterns of coexisting cristobalite and braunite confirms a maximum silica-excess in braunite of only about 2 wt.% over the ideal composition, Mn2+Mn 6 3+ SiO12.  相似文献   

20.
Vein-type gold deposits in the Atud area are related to the metagabbro–diorite complex that occurred in Gabal Atud in the Central Eastern Desert of Egypt. This gold mineralization is located within quartz veins and intense hydrothermal alteration haloes along the NW–SE brittle–ductile shear zone, as well as along the contacts between them. By using the mass balance calculations, this work is to determine the mass/volume gains and losses of the chemical components during the hydrothermal alteration processes in the studied deposits. In addition, we report new data on the mineral chemistry of the alteration minerals to define the condition of the gold deposition and the mineralizing fluid based on the convenient geothermometers. Two generations of quartz veins include the mineralized grayish-to-white old vein (trending NW–SE), and the younger, non-mineralized milky white vein (trending NE–SW). The ore minerals associated with gold are essentially arsenopyrite and pyrite, with chalcopyrite, sphalerite, enargite, and goethite forming during three phases of mineralization; first, second (main ore), and third (supergene) phases. Three main hydrothermal alteration zones of mineral assemblages were identified (zones 1–3), placed around mineralized and non-mineralized quartz veins in the underground levels. The concentrations of Au, Ag, and Cu are different from zone to zone having 25–790 ppb, 0.7–69.6 ppm, and 6–93.8 ppm; 48.6–176.1 ppb, 0.9–12.3 ppm, and 39.6–118.2 ppm; and 53.9–155.4 ppb, 0.7–3.4 ppm, and 0.2–79 ppm for zones 1, 2, and 3, respectively.The mass balance calculations and isocon diagrams (calculated using the GEOISO-Windows program) revealed the gold to be highly associated with the main mineralized zone as well as sericitization/kaolinitization and muscovitization in zone 1 more than in zones 2 and 3. The sericite had a higher muscovite component in all analyzed flakes (average XMs = 0.89), with 0.10%–0.55% phengite content in wall rocks and 0.13%–0.29% phengite content in mineralized quartz veins. Wall rocks had higher calcite (CaCO3) contents and lower MgCO3 and FeCO3 contents than the quartz veins. The chlorite flakes in the altered wall rocks were composed of pycnochlorite and ripidolite, with estimated formation temperatures of 289–295 °C and 301–312 °C, respectively. Albite has higher albite content (95.08%–99.20%) which occurs with chlorite in zone 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号