首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44–36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50–70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre‐atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re‐evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5–0.6 Ma after formation of calcium‐aluminum‐rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti‐type chondrites were implanted by low‐velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth‐crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.  相似文献   

2.
Here we characterize the magnetic properties of the Chelyabinsk chondrite (LL5, S4, W0) and constrain the composition, concentration, grain size distribution, and mineral fabric of the meteorite's magnetic mineral assemblage. Data were collected from 10 to 1073 K and include measurements of low‐field magnetic susceptibility (χ0), the anisotropy of χ0, hysteresis loops, first‐order reversal curves, Mössbauer spectroscopy, and X‐ray microtomography. The REM and REM′ paleointensity protocols suggest that the only magnetizations recorded by the chondrite are components of the Earth's magnetic field acquired during entry into our planet's atmosphere. The Chelyabinsk chondrite consists of light and dark lithologies. Fragments of the light lithology show logχ0 = 4.57 ± 0.09 (s.d.) (= 135), while the dark lithology shows 4.65 ± 0.09 (= 39) (where χ0 is in 10?9 m3 kg?1). Thus, Chelyabinsk is three times more magnetic than the average LL5 fall, but is similar to a subgroup of metal‐rich LL5 chondrites (Paragould, Aldsworth, Bawku, Richmond) and L/LL5 chondrites (Glanerbrug, Knyahinya). The meteorite's room‐temperature magnetization is dominated by multidomain FeNi alloys taenite and kamacite (no tetrataenite is present). However, below approximately 75 K remanence is dominated by chromite. The metal contents of the light and dark lithologies are 3.7 and 4.1 wt%, respectively, and are based on values of saturation magnetization.  相似文献   

3.
Abstract– We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm?2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al‐based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10–20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break‐up event in the last 3.8 Ga.  相似文献   

4.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

5.
T. Kohout  R. Kiuru  P. Scheirich  R. Macke 《Icarus》2011,212(2):697-700
The density measurements of Almahata Sitta ureilites reveal a bulk density of ∼3.1 g/cm3. This value, together with the 2008 TC3 asteroid shape model and albedo, was used to estimate the asteroid’s mass. Based on the study of recovered meteorites and atmospheric entry observations Asteroid 2008 TC3 is compositionally heterogeneous and of low mechanical strength. Thus we consider the presence of significant macroporosity likely, lowering asteroid’s bulk density compared to that of the Almahata Sitta ureilites. Most realistic albedos lie in a range of 0.09-0.2 and the presence of significant macroporosity leads to mass estimates below 20 × 103 kg, which is lower than previously estimated. The presence of a non-ureilitic fraction and space weathering may affect the albedo and also influence the mass estimates. However, from current data it is not possible to quantify this effect.  相似文献   

6.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

7.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

8.
Abstract– A calibrated lightcurve is presented of the near‐Earth asteroid 2008 TC3, obtained before it impacted Earth on October 7, 2008. The asteroid was observed in unfiltered images from the end of astronomical twilight until the object entered Earth’s shadow about 2 h later. The observations covered a wide range of phase angles from 14.79° to 2.93°, during which the asteroid ranged from 82,000 km to 29,000 km distance from the observer. A method is presented for obtaining photometrically filtered brightness values for the asteroid using unfiltered imaging techniques. Over 1,700 images of the asteroid produce a lightcurve with a peak‐to‐peak variation in V of 0.76 magnitude. Analysis of the lightcurve yields values for H = 30.86 ± 0.01 and G = 0.33 ± 0.03. Combined with other constraints on the kinetic energy and diameter of the asteroid, which suggest a low 1.8 g cm?3 density and albedo 0.05 ± 0.01, the value of H implies an asteroid of about 4.1 m in diameter, 28 m3 in volume, and 51,000 kg in mass. The determined value of G is out of range for normal, larger asteroids of albedo 0.05–0.15.  相似文献   

9.
The trajectory and orbit of the LL7 ordinary chondrite Dishchii'bikoh are derived from low‐light video observations of a fireball first detected at 10:56:26 UTC on June 2, 2016. Results show a relatively steep ~21° inclined orbit and a short 1.13 AU semimajor axis. Following entry in Earth's atmosphere, the meteor luminosity oscillated corresponding to a meteoroid spin rate of 2.28 ± 0.02 rotations per second. A large fragment broke off at 44 km altitude. Further down, mass was lost to dust during flares at altitudes of 34, 29, and 25 km. Surviving meteorites were detected by Doppler weather radar and several small 0.9–29 g meteorites were recovered under the radar reflection footprint. Based on cosmogenic radionuclides and ground‐based radiometric observations, the Dishchii'bikoh meteoroid was 80 ± 20 cm in diameter assuming the density was 3.5 g/cm3. The meteoroid's collisional history confirms that the unusual petrologic class of LL7 does not require a different parent body than three previously observed LL chondrite falls. Dishchii'bikoh was ejected 11 Ma ago from parent body material that has a 4471 ± 6 Ma U‐Pb age, the same as that of Chelyabinsk (4452 ± 21 Ma). The distribution of the four known pre‐impact LL chondrite orbits is best matched by dynamical modeling if the source of LL chondrites is in the inner asteroid belt in a low inclined orbit, with the highly inclined Dishchii'bikoh being the result of interactions with Earth before impacting.  相似文献   

10.
Abstract— Asteroids tens to hundreds of meters in diameter constitute the most immediate impact hazard to human populations, yet the rate at which they arrive at Earth's surface is poorly known. Astronomic observations are still incomplete in this size range; impactors are subjected to disruption in Earth's atmosphere, and unlike the Moon, small craters on Earth are rapidly eroded. In this paper, we first model the atmospheric behavior of iron and stony bodies over the mass range 1–1012 kg (size range 6 cm‐1 km) taking into account deceleration, ablation, and fragmentation. Previous models in meteoritics deal with rather small masses (<105–106 kg) with the aim of interpreting registered fireballs in atmosphere, or with substantially larger objects without taking into account asteroid disruption to model cratering processes. A few earlier attempts to model terrestrial crater strewn fields did not take into account possible cascade fragmentation. We have performed large numbers of simulations in a wide mass range, using both the earlier “pancake” models and also the separated fragments model to develop a statistical picture of atmosphere‐bolide interaction for both iron and stony impactors with initial diameters up to ?1 km. Second, using a compilation of data for the flux at the upper atmosphere, we have derived a cumulative size‐frequency distribution (SFD) for upper atmosphere impactors. This curve is a close fit to virtually all of the upper atmosphere data over 16 orders of magnitude. Third, we have applied our model results to scale the upper atmosphere curve to a flux at the Earth's surface, elucidating the impact rate of objects <1 km diameter on Earth. We find that iron meteorites >5 times 104 kg (2.5 m) arrive at the Earth's surface approximately once every 50 years. Iron bodies a few meters in diameter (105–106 kg), which form craters ?100 m in diameter, will strike the Earth's land area every 500 years. Larger bodies will form craters 0.5 km in diameter every 20,000 years, and craters 1 km in diameter will be formed on the Earth's land area every 50,000 years. Tunguska events (low‐level atmospheric disruption of stony bolides >108 kg) may occur every 500 years. Bodies capable of producing hazardous tsunami (?200 m diameter projectiles) should strike the Earth's surface every ?100,000 years. This data also allows us to assess the completeness of the terrestrial crater record for a given area over a given time interval.  相似文献   

11.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

12.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

13.
We present petrologic and isotopic data on Northwest Africa (NWA) 4799, NWA 7809, NWA 7214, and NWA 11071 meteorites, which were previously classified as aubrites. These four meteorites contain between 31 and 56 vol% of equigranular, nearly endmember enstatite, Fe,Ni metal, plagioclase, terrestrial alteration products, and sulfides, such as troilite, niningerite, daubréelite, oldhamite, and caswellsilverite. The equigranular texture of the enstatite and the presence of the metal surrounding enstatite indicate that these rocks were not formed through igneous processes like the aubrites, but rather by impact processes. In addition, the presence of pre‐terrestrially weathered metal (7.1–14 vol%), undifferentiated modal abundances compared to enstatite chondrites, presence of graphite, absence of diopside and forsterite, low Ti in troilite, and high Si in Fe,Ni metals suggest that these rocks formed through impact melting on chondritic and not aubritic parent bodies. Formation of these meteorites on a parent body with similar properties to the EHa enstatite chondrite parent body is suggested by their mineralogy. These parent bodies have undergone impact events from at least 4.5 Ga (NWA 11071) until at least 4.2 Ga (NWA 4799) according to 39Ar‐40Ar ages, indicating that this region of the solar system was heavily bombarded early in its history. By comparing NWA enstatite chondrite impact melts to Mercury, we infer that they represent imperfect petrological analogs to this planet given their high metal abundances, but they could represent important geochemical analogs for the behavior and geochemical affinities of elements on Mercury. Furthermore, the enstatite chondrite impact melts represent an important petrological analog for understanding high‐temperature processes and impact processes on Mercury, due to their similar mineralogies, Fe‐metal‐rich and FeO‐poor silicate abundances, and low oxygen fugacity.  相似文献   

14.
Abstract— Near‐Earth asteroid (25143) 1998 SF36 is a planned target for the Japanese MUSES‐C sample return mission. High signal‐to‐noise and relatively high‐resolution (50 Å) visible and near‐infrared spectroscopic measurements obtained during this asteroid's favorable 2001 apparition reveal it to have a red‐sloped S(IV)‐type spectrum with strong 1 and 2 μm absorption bands analogous to those measured for ordinary chondrite meteorites. This red slope, which is the primary spectral difference between (25143) 1998 SF36 and ordinary chondrite meteorites, is well modeled by the spectrum of 0.05% nanophase iron (npFe0) proposed as a weathering mechanism by Pieters et al. (2000). Asteroid 1998 SF36 appears to have a surface composition corresponding to that of ordinary chondrite meteorites and is most similar in spectral characteristics and modeled olivine/pyroxene content to the LL chondrite class.  相似文献   

15.
The anomalous polymict ureilite Almahata Sitta (AhS) fell in 2008 when asteroid 2008 TC3 disintegrated over Sudan and formed a strewn field of disaggregated clasts of various ureilitic and chondritic types. We studied the petrology and oxygen isotope compositions of enstatite meteorite samples from the University of Khartoum (UoK) collection of AhS. In addition, we describe the first bona fide (3.5 mm-sized) clast of an enstatite chondrite (EC) in a typical polymict ureilite, Northwest Africa (NWA) 10657. We evaluate whether 2008 TC3 and typical polymict ureilites have a common origin, and examine implications for the history of enstatite meteorite asteroids in the solar system. Based on mineralogy, mineral compositions, and textures, the seven AhS EC clasts studied comprise one EHa3 (S151), one ELb3 (AhS 1002), two EHb4-5 (AhS 2012, AhS 26), two EHb5-6 or possibly impact melt rocks (AhS 609, AhS 41), and one ELb6-7 (AhS 17), while the EC clast in NWA 10657 is EHa3. Oxygen isotope compositions analyzed for five of these are similar to those of EC from non-UoK collections of AhS, and within the range of individual EC meteorites. There are no correlations of oxygen isotope composition with chemical group or subgroup. The EC clasts from the UoK collection show the same large range of types as those from non-UoK collections of AhS. The enstatite achondrite, AhS 60, is a unique type (not known as an individual meteorite) that has also been found among non-UoK AhS samples. EC are the most abundant non-ureilitic clasts in AhS but previously were thought to be absent in typical polymict ureilites, necessitating a distinct origin for AhS. The discovery of an EC in NWA 10657 changes this. We argue that the types of materials in AhS and typical polymict ureilites are essentially similar, indicating a common origin. We elaborate on a model in which AhS and typical polymict ureilites formed in the same regolith on a ureilitic daughter body. Most non-ureilitic clasts are remnants of impactors implanted at ~50–60 Myr after CAI. Differences in abundances can be explained by the stochastic nature of impactor addition. There is no significant difference between the chemical/petrologic types of EC in polymict ureilites and individual EC meteorites. This implies that fragments of the same populations of EC parent bodies were available as impactors at ~50–60 Myr after CAI and recently. This can be explained if materials excavated from various depths on EC bodies at ~50–60 Myr after CAI were reassembled into mixed layers, leaving relatively large bodies intact to survive 4 billion years. Polymict ureilites record a critical timestep in the collisional and dynamical evolution of the solar system, showing that asteroids that may have accreted at distant locations had migrated to within proximity of one another by 50–60 Myr after CAI, and providing constraints on the dynamical processes that could have caused such migrations.  相似文献   

16.
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types.  相似文献   

17.
Atlanta is the fifth known brecciated enstatite chondrite. It contains a centimeter-sized troilite-rich clast, similar to those that occur in Blithfield. All of these clasts probably formed in the solar nebula under high pS2/pO2 conditions in a gas of non-cosmic composition. The absence of ordinary or carbonaceous chondrite clasts in any of the enstatite chondrite breccias and absence of enstatite chondrite clasts or materials formed at high pS2/pO2 ratios in ordinary and carbonaceous chondrite breccias support the model that enstatite chondrites were formed at a location distant from those of the other chondritic groups.  相似文献   

18.
The formation of hydrated salts is an expected consequence of aqueous alteration of Main Belt objects, particularly for large, volatile‐rich protoplanets like Ceres. Sulfates, present on water‐bearing planetary bodies (e.g., Earth, Mars, and carbonaceous chondrite parent bodies) across the inner solar system, may contribute to Ceres’ UV and IR spectral signature along with phyllosilicates and carbonates. We investigate the presence and stability of hydrated sulfates under Ceres’ cryogenic, low‐pressure environment and the consequent spectral effects, using UV–Vis–IR reflectance spectroscopy. H2O loss begins instantaneously with vacuum exposure, measured by the attenuation of spectral water absorption bands, and a phase transition from crystalline to amorphous is observed for MgSO4·6H2O by X‐ray powder diffraction. Long‐term (>40 h), continuous exposure of MgSO4·nH2O (n = 0, 6, 7) to low pressure (10?3–10?6 Torr) causes material decomposition and strong UV absorption below 0.5 μm. Our measurements suggest that MgSO4·6H2O grains (45–83 μm) dehydrate to 2% of the original 1.9 μm water band area over ~0.3 Ma at 200 K on Ceres and after ~42 Ma for 147 K. These rates, inferred from an Avrami dehydration model, preclude MgSO4·6H2O as a component of Ceres’ surface, although anhydrous and minimally hydrated sulfates may be present. A comparison between Ceres emissivity spectra and laboratory reflectance measurements over the infrared range (5–17 μm) suggests sulfates cannot be excluded from Ceres’ mineralogy.  相似文献   

19.
On June 12, 2004, a meteorite passed through Earth's atmosphere and landed under the television in the living room of a house in Auckland, New Zealand. Textural characteristics, the chemistry of olivine (Fa23–24) and orthopyroxene (Fs20.7), and the bulk rock triple oxygen isotopes (δ17O + 3.1; δ18O + 4.2‰) from the interior of the completely unweathered (W0) 1.3 kg meteorite, hereafter referred to as Auckland, suggest it to be a strongly metamorphosed fragment from the interior of a low iron ordinary chondrite (L6) parent asteroid. The occurrence of maskelynite but shock fracturing of olivine and pyroxene indicates Auckland experienced extreme shock metamorphism (S5), likely during Ordovician fragmentation of the asteroid parent. The fusion crust consists of three zones: (1) an innermost zone containing narrow Fe-Ni-S-bearing veins that migrated along pre-existing shock fractures in olivine and pyroxene; (2) a middle zone in which the meteorite partially melted to form a silicate glass and immiscible blebs of metal and troilite, and is accompanied by unmelted silicate minerals; and (3) an approximately 0.1 mm wide vesicular-rich outermost layer that largely melted, volatilizing sulfides, before quenching to form glass and olivine. Oxygen isotope values of the bulk rock and/or maskelynite of melted rim and modified substrate are 2–3‰ greater than the meteorite interior and indicate that up to 19% of terrestrial atmospheric O2 was incorporated into the fusion crust during the formation. The fusion crust migrated inwards as ablation occurred, enabling melting, migration, and re-precipitation ± loss of sulfide and metal components, with the prominent glassy rim therefore forming from an already chemically modified zone.  相似文献   

20.
Abstract— The newly discovered asteroid 2003 YN107 is currently a quasi‐satellite of the Earth, making a satellite‐like orbit of high inclination with apparent period of one year. The term quasi‐satellite is used since these large orbits are not completely closed, but rather perturbed portions of the asteroid's orbit around the Sun. Due to its extremely Earth‐like orbit, this asteroid is influenced by Earth's gravity to remain within 0.1 AU of the Earth for approximately 10 years (1997 to 2006). Prior to this, it had been on a horseshoe orbit closely following Earth's orbit for several hundred years. It will re‐enter such an orbit, and make one final libration of 123 years, after which it will have a close interaction with the Earth and transition to a circulating orbit. Chaotic effects limit our ability to determine the origin or fate of this object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号