首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidal conditions differently influence inter‐tidal organisms in terms of general physiological and metabolic responses. In this study we investigated the morphological response in shells of Mytilus galloprovincialis native to different micro‐tidal coastal environments in the Northern Adriatic Sea. Our purpose was to highlight the ecophenotypic variability across tidal levels and to elucidate how tidal currents and waves produced by anthropogenic activities may play a part in modulating shell morphology. Three sampling sites were selected: an open‐sea area 15 km off‐shore and two sites within the lagoon of Venice, the first near one of its three inlets, and the other one in the proximity of Venice city centre. At each sampling site, organisms were seasonally collected at different depths within their vertical zonation, either in the inter‐tidal zone – i.e. at both the highest and lowest tide zonation limits, and subtidally. The mussel shells were analysed by investigation of their morphometric relationships (height/length and width/length ratios) and by elliptic Fourier analysis of the shell contours. Shell thickness and condition index were also evaluated for a better comprehension of energy allocation/partitioning. Estimates based on long‐term measurements, visual observation, wind statistics and wave growth laws allowed an evaluation of the forces acting on shells. At the open‐sea site, the observed phenotypic variability of both shell shape and thickness was clearly related to the tidal vertical zonation. At the two lagoon sites, the currents generated by tidal flow through the inlet and the waves caused by the frequent passage of boats influenced both shell shape and thickness. A trade‐off between protection and growth was apparent along the tide gradient, as emphasized by the differences in the partitioning and allocation of energy between shell and flesh production.  相似文献   

2.
Functional groups have become an important tool for characterizing communities of marine and estuarine environments. Their use also holds promise for a better understanding of the temporal dynamics of phytoplankton. This study aimed to evaluate the contributions of phytoplankton size fractions and functional groups characterizing short‐term variation throughout tidal cycles and between dry and rainy seasons in a tropical estuarine system. Camamu Bay is an oligotrophic estuarine system that is under strong influence from tropical shelf waters and is characterized by high salinity and low concentrations of dissolved nutrients. Surface‐water samples were collected at nine sampling sites distributed among the three hydrodynamic regions of the bay, and at a mooring, at 3‐hr intervals during tidal cycles (12 hr each) in both the rainy and the dry season. Although the abundances of the phytoplankton fractions (pico‐, nano‐, and micro‐) were higher in the rainy season and during periods of higher tide, they were not significantly higher. The phytoplankton community in the bay comprises three functional groups: GI = “colonial” (i.e., chain‐forming diatoms and filamentous cyanobacteria); GII = “GALD >40” (i.e., pennate and centric diatoms with MDL >40 µm), and GIII = “flagellates” (i.e., species with motility via flagella). Nanoflagellates were the most abundant form in the bay, while chain‐forming diatoms, in particular, contributed to the microphytoplankton fraction during both the rainy and dry seasons. Functional groups, as defined by cluster analysis, reflected ecological strategies compatible with the high hydrodynamics of Camamu Bay, which is characterized by processes of tidal‐forced intense mixing, mainly during periods of spring tides. The phytoplankton of the bay was found to possess a series of attributes (functional traits) that endow them with some resistance to sinking. Functional diversity indexes (FEve, FDiv, and FDis) indicated a stable community without significant short‐term variation due to low variability in the environmental conditions of the system during the study period.  相似文献   

3.
Sandy beach/surf‐zone ecosystems are unique environments that, despite the harsh and highly variable hydrodynamic conditions, present a diverse and heterogeneous fauna. However, the dynamics of these ecosystems are currently poorly understood. In this study we tested the hypothesis that surf‐zone assemblages vary with temporal factors such as time of day, tide and tidal height. To test this hypothesis, the surf‐zone community of Bastendorff, a Southern Oregon sandy beach was sampled during the summer of 2006. Samples were collected to (i) describe the smaller, benthic and larger swimming assemblages, (ii) determine whether assemblage compositions, densities, species richness and diversity vary with time of day, tide and tidal height, (iii) explore potential reasons for the variation by correlating environmental factors to the assemblages, and (iv) identify particular species that most strongly exhibit these variations. A hyperbenthic sledge, a sediment corer and a beach seine were used to collect the smaller swimming, benthic and larger swimming fauna, respectively. Sampling occurred during day and night, spring and neap tide, and high, mid and low tide. A total of 76,743 individuals belonging to 105 species were collected. Ninety‐one invertebrate (72,904 individuals), 15 invertebrates (2234 individuals), and 19 invertebrate and vertebrate species (1605 individuals) were collected with the sledge, corer and seine, respectively. Nine species of fish were caught, 98% of which were juveniles. The smaller and larger swimming assemblages varied most strongly with the time of day, suggesting certain species will actively move to the shallow surf‐zone at night. The three assemblages also varied with the tide, potentially due to the larger waves and higher abundance of detached macrophytes observed during spring tides when compared to neap tides, which could push individuals into the surf zone. The benthic assemblage most strongly varied with tidal height and sand grain size, confirming the presence of different faunal zones within Oregon sandy beaches. Finally, several variables of the swimming assemblages varied with temperature and salinity, suggesting that downwelling favorable conditions may have transported species close to shore. Bastendorff presents a complex and diverse surf‐zone community that appears to be influenced by diel species movements, environmental variables such as wave height and abundance of detached macrophytes, and regional oceanographic conditions.  相似文献   

4.
Spatial and temporal variation in tropical inter‐tidal communities is poorly known, making predictions about the effects of climate change and other anthropogenic disturbances difficult. Along Southwest O‘ahu, Hawai'i, local residents are concerned about the environmental effects of coastal development and the perceived loss of targeted algal species, which are collected for human consumption. To describe the coastal benthic community and better understand the processes that form and maintain it, the abundance and composition of macroalgae were sampled in the region's inter‐tidal zone from 2006 to 2015. Sixty‐six macroalgal species and two broad algal assemblages were identified that corresponded to substrate topography and sand influence at a similar tidal elevation. Along flat carbonate benches with a sand beach, Phaeophyceae and Rhodophytes occurred in almost equal proportions, while shores with slightly more topographic relief and angular substrate were dominated by Rhodophytes. Foliose or turf algal forms were most common. Surveys captured the local invasion of an alga, Avrainvillea sp. and significant declines in abundant macroalgae in 2015 after a period of unseasonably warm, calm water. Temporal changes in algal assemblages were related to maximum water temperature and wave height but not precipitation. Thus, algal assemblages appear to be structured by local beach morphology as they interact with sand and wave activity and episodically by unusual weather events. However, manipulation and continuous monitoring of the algal assemblages coupled to sensing of the localized environment is necessary to confirm factors related to assembly maintenance and recent species shifts.  相似文献   

5.
Morphodynamics of a bar-trough surf zone   总被引:3,自引:0,他引:3  
A field study was made of the distinguishing morphodynamic processes operating in a surf zone which perennially exhibits accentuated bar-trough topography (the “longshore-bar-trough” and “rhytmic-bar-and-beach” states as described by Wright and Short, 1984). Characteristic features of the morphology include a shallow bar with a steep shoreward face, a deep trough, and a steep beach face. This morphology, which is favored by moderate breaker heights and small tidal ranges, strongly controls the coupled suite of hydrodynamic processes. In contrast to fully dissipative surf zones, the bar-trough surf zone is not at all saturated and oscillations at incident wave frequency remain dominant from the break point to the subaerial beach. The degree of incident wave groupiness does not change appreciably across the surf zone. Infragravity standing waves which, in dissipative surf zones, dominate the inshore energy, remain energetically secondary and occur at higher frequencies in the bar trough surf zone. Analyses of the field data combined with numerical simulations of leaky mode and edge wave nodal—antinodal positions over observed surf-zone profiles, indicate that the frequencies which prevail are favored by the resonant condition of antinodes over the bar and nodes in the trough. Standing waves which would have nodes over the bar are suppressed. Sediment resuspension in the surf zone appears to be largely attributable to the incident waves which are the main source of bed shear stress. In addition, the extra near-bottom eddy viscosity provided by the reformed, non-breaking waves traversing the trough significantly affects the vertical velocity profile of the longshore current. Whereas the bar is highly mobile in terms of onshore—offshore migration rates, the beach face and inner regions of the trough are remarkably stable over time.  相似文献   

6.
The spatial and temporal patterns within the surf zone epibenthic assemblages were studied in a coastal fringe of Argentina to determine whether assemblage compositions, abundance, species richness and diversity vary spatially and temporarily. Sampling was conducted seasonally in two sandy beaches over 2 years with a benthic sledge used to collect the fauna in the upper centimeters of soft bottom sediments and the epifauna on the sediment surface. Physical variables were measured in the same coastal sites where biological sampling was conducted. A total of 58 morphospecies were collected. Peracarid crustaceans were the most abundant group. The mysid Pseudobranchiomysis arenae (new genus–new species) (29.73 ± 17.79 ind. per sample) and the isopod Leptoserolis bonaerensis (51.54 ± 22.35 ind. per sample) were the most abundant and common species and were present regularly throughout the sampling period. Differences in the surf zone community composition were found between the beaches; these differences could be related to variation in physical parameters such as sand grain size and wave climate, indicating the possible influence of the morphodynamic state of the beaches on the epibenthic assemblages. A seasonal abundance trend was detected, reflecting the changes in abundance of the two dominant species; the richness pattern was not easily detectable due to the sporadic appearance of non‐resident species in the surf zone, probably due to different causes, including dispersion by entry of water from surrounding areas, littoral currents and storms. The surf zone studied presents a complex and dynamic epibenthic community that appears to be influenced by the morphodynamic state of the beach and the dynamic of non‐resident species.  相似文献   

7.
Research on coralline algal responses to ocean acidification and other environmental stressors has increased in recent years as coralline algae is thought to stand a higher chance of being affected by acidification stress than other macroalgae. To provide context and enhance the existing eco‐physiological framework for climate change studies, it is important to understand the effects of non‐extreme stressors experienced regularly by inter‐tidal coralline algae. In this study, we tested the potentially interacting effects of diurnal and tidal treatments on calcification in the geniculate coralline algae Corallina frondescens and Corallina vancouveriensis using 13C‐labeled bicarbonate. Both species deposited more calcium carbonate during the day than at night, and also when submerged (high tide) compared with when emerged (low tide) in their apical and mature segments (intergenicula). These results indicate that inter‐tidal coralline algae do in fact pay a cost for living inter‐tidally at the edge of an adaptive zone.  相似文献   

8.
Crabs are important predators of inter‐tidal ecosystems, controlling the abundance and distribution of their prey populations. Often the same crab species occupies several habitats and, although their effects on prey have been quantified across habitats, crabs’ dietary and morphological responses to differing environmental influences have been overlooked. Here, we used the crabs Eriphia verrucosa and Pachygrapsus marmoratus as model species to examine differences in claw morphometry – size and wear – and diet between rocky shore and heterogeneous sand flat habitats. We predicted that, intra‐specifically, crabs from rocky shores would consume more hard‐shelled prey owing to their high availability and consequently, would display chelipeds with the following claw characteristics: a higher degree of claw damage, stronger musculature (higher propel height) and increased mechanical advantage (defined as the ratio of input lever length to output lever length) than crabs in the heterogeneous sand flat habitats. Sampling was performed in heterogeneous sand flat habitats and rocky shores of the Central Portuguese coast. For each crab species, carapace width, diet composition and several claw morphometric measures were recorded, revealing significant intra‐specific differences (using multivariate analysis) between shore types. We found that E. verrucosa and P. marmoratus consumed more hard prey on rocky shore than on sand flat habitats, which resulted in rocky shore crabs having more accentuated dentition wear and larger musculature than their sand flat habitat counterparts. We suggest that the strong response of crab claw morphometry to environmentally induced diet variations is an important mechanism in the successful adaptation of crab species to inhabit differing habitats. A major implication is that the impact of the same species on prey may vary largely with habitat type as a result of predation efficiency varying with claw condition.  相似文献   

9.
Fulton's K condition factor was applied, for the first time, to inter‐tidal specimens of the shanny (Lipophrys pholis) and long‐spined scorpion fish (Taurulus bubalis) from two English rocky shore and two Welsh rocky shore sites during summer 2010 and winter 2011. As both species contribute to the diet of commercial species such as cod (Gadus morhua) and near‐threatened species such as the European otter (Lutra lutra), their condition may affect that of these predators. Fulton's K found that inter‐tidal Welsh fish maintained a ‘good’ condition between seasons, whereas the inter‐tidal English fish were in a poorer condition during winter. Although condition also changed amongst the sites on each coast, further studies are needed into fish morphologies, environmental parameters, prey availabilities and abundances, and fish specimen sex and maturities.  相似文献   

10.
The critical role of ecological preferences and opportunity in determining contaminant uptake and adaptive responses of sexes in the wild is still poorly understood. This ecological relationship was investigated by measuring metal bioaccumulation and antioxidant activity in male and female blue crab populations from open water habitat and the littoral/inter‐tidal zone of the Lagos Lagoon. A total of 741 samples of blue crab (littoral zone: 263 females, 137 males; open water zone, 230 females, 111 males) was collected monthly over 24 months (January 2010–January 2012) from each site and the measurements of morphometric features (wet weight, carapace length, carapace width) were recorded; condition index, metal (redox active: Cu, Zn, redox inactive: Pb, Cd) concentration in tissues (gills, hepatopancreas, gonads and muscle) and antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase, catalase and malondialdehyde) were measured for each sex. Monthly sediment samples for both habitats were also analysed for metals using standard methods. Female crabs were significantly larger (p < .05) with a better condition index than the male crabs across sites and seasons, while higher oxidative damage was recorded in male crabs in the littoral zone compared to the open water zone. The results show that there was a negative association between antioxidant activity and lipid peroxidation; a negative relationship between concentrations of redox‐inactive metals (Pb and Cd) and antioxidant activity in male crab tissues; and a positive relationship between uptake of a redox‐active metal (Cu) and antioxidant activity in female crab tissues. Although these trends suggest sex‐specific toxicity, they also associate redox‐inactive metals with the downregulation of antioxidant activity and oxidative stress. Furthermore, the higher condition index of females corroborates the possibility of sex‐specific toxicity, while the larger‐sized females compared to males suggests size‐sexual dimorphism in the blue crab populations. The site‐specific oxidative damage between sexes may be attributed to the different complexity of both habitats, which affords different ecological opportunities for the sexes.  相似文献   

11.
The study of near‐pristine estuaries can be used as a tool for mitigation projects of harmful effects in anthropogenic eutrophic systems, since one can analyze the effect of temporal and spatial variations generated mainly by natural forces. Phytoplankton taxonomy has been used as a classical indicator to assess changes in transitional water communities, however alternative methods based on morphological, behavioral and physiological traits offer the opportunity to compare sites or moments with different taxonomic compositions. Our goal, in this context, is to evaluate phytoplankton community short‐term and seasonal variability in a near‐pristine estuary, Barra Grande estuary (Ilha Grande, RJ, Brazil), through species functional traits and thus community functional diversity. Samplings were carried out in a mooring in complete tidal cycles, seasonally during 2012. Our results showed a diverse phytoplankton community with 38 frequent and abundant taxa, marked by density variation (1.2 × 10.4–2 × 10.7 cell L?1) in depth, with abundance inversely related to tidal currents. The functional structure of the phytoplankton community measured by functional diversity (FD), varied seasonally in and across a gradient of tidal energy. A core community, mainly represented by flagellates and dinoflagellates, occurred in all observations and was highly functional (high FD), exploiting a variety of habitats. The chain‐forming diatoms were associated with high tidal energy, and occurred in higher densities during summer. Phytoplankton cell size, cell shape, and the ability to form colonies are extremely plastic traits that can be regulated by the environment, however, isolated tychopelagic diatoms were present in the study area across all seasons, with higher contributions in autumn and winter, reflecting the shallow characteristic of this system. During the winter, an exposed sandbar was formed, and the lack of connection with the ocean resulted in an abundance of riverine and brackish water taxa. In this near‐pristine estuary the densities and occurrences of HAB phytoplankton are low. Trait‐based analyses add information about community structure, which can be impacted by anthropogenic actions in urbanized coastal systems. Thus the information provided by this study regarding phytoplankton functional diversity and its relation to nutrients and hydrography in Barra Grande Estuary can be applied as a baseline model for the development of public policies.  相似文献   

12.
The inter‐tidal zone around sewage discharges in a Southwest Atlantic shore (Mar del Plata, Argentina) is currently colonized by extensive inter‐tidal reefs of the invasive spionid Boccardia proboscidea. Understanding the links between both human and natural disturbances and the massive development of non‐indigenous species will help prevent marine bioinvasions, which are already favoured by global oceanic trade. We present herein predictive models for variations in the density of B. proboscidea around sewage discharges of Mar del Plata, using environmental (pH, turbidity, temperature, salinity and total organic matter content), weather (wind direction and storm records), spatial (sites) and temporal (season and year) variables. Density variations were modelled by generalized linear models, and model averaging (multimodel inference) was used to obtain predicted values. The highest predicted values of B. proboscidea density occurred at sites to the south of the sewage effluent in spring. These sites are more affected by urban effluent discharges and they showed increased B. proboscidea density when the north wind was predominant. In addition, B. proboscidea density values were higher in sites with 20–22 °C (seawater temperature), high total organic matter content in sediments and low salinity. The averaged model was only a good ‘predictive model’ for sites to the north of the outfall, but was useful as an ‘explanatory model’ in all sites. Such predictions may help to back up conservation and management policies and decisions.  相似文献   

13.
Abstract. To evaluate the effects of beach morphodynamics upon the abundance, tidal movement, population structure and burrowing rate of the crab Emerita analoga (Stimpson) (Anomura, Hippidae) we sampled two beaches in south central Chile (ca. 42° S), Mar Brava and Ahui with dissipative and reflective characteristics, res­pectively. The swash zone at the dissipative beach was 5 – 6 times wider than that of the reflective beach. A at the dissipative beach, upwash speeds were higher and the number of effluent line crossings were lower by more than an order of magnitude. To examine the tidal movement of E. analoga, we collected crabs from 5 to 6 tidal levels of each beach every 2 h across 12 h of the tidal cycle. The intertidal distribution of crabs differed between beaches; i. e., at the dissipative beach they were primarily located at the swash zone, while at the reflective beach they were mostly located at the low tide level and shallow subtidal. The change in position of crabs was pronounced across the tidal cycle at the dissipative beach (Mar Brava), with most of the animals remaining in the active swash zone. Body size data were used to construct size frequency distributions for each population. Crabs from the dissipative beach reached larger sizes than those at the reflective beach. Sediments were coarser at the latter versus the former beach. Crabs burrowed at similar rates in the sand from both beaches, a result which supports the idea that E. analoga is a “sediment generalist” capable of burrowing successfully in a wide range of sediment types. This characteristic is likely a key to the broad success of this species on the full range of beach morphodynamic types along the coasts of South and North America.  相似文献   

14.
On a global scale, urbanization has resulted in substantial proportions of coasts being replaced by artificial structures such as marinas, breakwaters and seawalls. There is broad consensus that coastal defense structures are poor surrogates of the natural habitats that they replace. Here we investigated the effects of the type and roughness of materials used for the construction of artificial structures on the surrounding biota by comparing abundances and distribution of key inter‐tidal taxa between natural shores and coastal defenses. Lower abundances of gastropods and barnacles were found on artificial coastal defense structures (regardless of the material type). At small spatial scales, abundances of key taxa increased with increasing roughness. Our results suggest that the choice of materials used for the construction of coastal defense structures has little effect on community structure per se, but that enhanced roughness could make coastal defenses better surrogates of natural habitats by supporting assemblages that are more similar to those found on natural shores.  相似文献   

15.
There are gaps in what is known about the patterns of gastropod shell use by hermit crabs in Brazilian lagoon areas, especially in Northeastern Brazil. However, this is important because the understanding of selection patterns provides information on life history and eco‐evolutionary conceptions of paguroids. The present study investigated the use of gastropod shells occupied by Pagurus criniticornis and Clibanarius sclopetarius in a coastal lagoon seasonally connected to an estuary and to the sea, correlating eco‐evolutionary aspects and hydrodynamic characters. The study was carried out between February 2013 and January 2014. Hermit crabs and their shells were identified and measured (hermit crabs’ cephalothorax shield length and width, major propodus length and height, weight, shell total length and width, shell aperture length and width). Partial least squares regression was used to analyse the morphometric data. Additionally, a multinomial proportions test was performed to infer patterns (inter‐/intra‐specific) of shells’ occupation. Hermit crab species occupied a total of 13 types of shells, predominantly those of Neritina virginea (67.83%). The shell weight was the most important determinant of shell occupancy in the morphometric model (variable importance in projection >1). The proportions of N. virginea shells used were similar in both species of hermit crabs, except between the sexes of P. criniticornis. Presumably, the high utilization rate of N. virginea shells is related to its abundance and dispersal, and to the shells’ suitability for hermit crabs, which is reflected by the morphometric model, as well as by the hydrodynamics of the lagoon‐estuarine environment. The relative occupation of different types of shells for each species of hermit crabs studied appears to be associated with regulation by inter‐/intra‐specific competition, which fosters the co‐occurrence of those populations. These results endorse coastal lagoons as a refuge and recruitment area for aquatic fauna. In addition, it highlights a challenge in the management and conservation of paguroid species whose population dynamics depend on the resources coming from the Gastropoda community.  相似文献   

16.
17.
Coastal ecosystems are complex and species rich, but are vulnerable to degradation from a variety of anthropogenic activities. Nevertheless, information on inter‐tidal community composition in the Caribbean Basin and at other oceanic sites is lacking. Such information is essential to developing a more comprehensive understanding of rocky inter‐tidal systems and their responses to global change. The goals of this study were to determine the relative importance of environmental (wave power density, wave height), habitat (e.g. algal cover, slope, complexity of rock surfaces) and anthropogenic (distance to roads, population density) factors associated with the structure of local assemblages at multiple shore heights and the regional metacommunity of mobile invertebrates on oceanic rocky inter‐tidal habitats. Environmental characteristics associated with habitat complexity (algal cover, rock surface complexity) and human population density were most strongly associated with abundance and biodiversity of invertebrates. Species richness was positively correlated with surface complexity, but abundance was negatively correlated with both surface complexity and per cent algal cover. By contrast, abundance of invertebrates was positively correlated with human population density, and diversity was negatively correlated with human population density. Abundance of invertebrates was greatest in the mid inter‐tidal zone, whereas diversity was greatest in the lower inter‐tidal zone. Metacommunity structure was Gleasonian, but the gradient along which species turnover occurred was correlated with measures of wave exposure, rather than anthropogenic activity. Unlike in previous studies, mostly at mainland sites, human activity primarily altered dominance patterns of communities, while having relatively little effect on species richness or composition.  相似文献   

18.
Rock pools can be found in inter‐tidal marine environments worldwide; however, there have been few studies exploring what drives their, fish species composition, especially in Australia. The rock‐pool environment is highly dynamic and offers a unique natural laboratory to study the habitat choices, physiological limitations and adaptations of inter‐tidal fish species. In this study rock pools of the Sydney region were sampled to determine how the physical (volume, depth, rock cover and vertical position) and biological (algal cover and predator presence) parameters of pools influence fish distribution and abundance. A total of 27 fish species representing 14 families was observed in tide pools at the four study locations. The five most abundant species were Bathygobius cocosensis, Centropogon australis, Enneapterygius atrogulare, Lepidoblennius haplodactylus and Microcanthus strigatus, which together represented 71% of the total number of fish recorded. Larger rock pools containing more algal and rock ledge cover hosted a larger and more diverse population of fish. Furthermore, certain species were only found in pools with specific characteristics, such as the presence of loose shells, a variety algae or rock cover, suggesting a high degree of habitat specificity. By contrast, some species were ubiquitous and thus can likely tolerate a wide variety of physical conditions.  相似文献   

19.
The rocky inter‐tidal habitat is a harsh and fluctuating environment, subject to frequent disturbances. Field observations of juvenile white seabream Diplodus sargus in inter‐tidal rocky habitats were conducted to analyse the spatial distribution and feeding activity of this species in relation to the tidal cycle. The depth at which fish were observed did not change in most tidal phases while feeding activity changed with tidal level, showing the occurrence of tidal migrations and that feeding may be limited by habitat availability in shallow waters and thus be dependent on tidal changes. The present results show the exploitation of available feeding areas in the rocky inter‐tidal by juvenile white seabream, which corroborates the importance of these habitats for the first developmental stages of this fish species.  相似文献   

20.
Besides the different scales within which coastal processes manifest their energy, the majority of the world's coastal regions exhibit forms of sediment heterogeneity that are physically significant. One example of a heterogeneous environment is Cassino beach, located at the southernmost part of Brazil, a fine-grain-sized sandy beach where fluid mud sporadically is transported to the nearshore and eventually onto the beach. At this site in 2005, as part of a field experiment, a video system was installed. Three years after the installation, a large mud transgression event took place in February 2008 and had 5 km of extension. In this context, the goal of the present work is to characterize the mud deposition pattern across the surf zone, describing the consequences of mud on nearshore dynamics using remote sensing techniques, beach profiles and suspended matter concentration. The surveyed beach profiles registered the deposition of fluid mud at the inner surf zone with concentrations up to 12 mg/l. The material was deposited close to the shoreline and had a cross-shore width of 100 m during the first deposition day occupying the entire water column. From surf zone time series of pixel intensity, it was possible to detect the attenuation of the surface wave spectra due to the presence of fluid mud. The combination of video techniques and field data allowed one to follow the formation of a double-layer system, where fluid mud overlays the sandy bottom. The video-based system at Cassino demonstrated that remote detection of fluid mud and quantification of its effect on the nearshore dynamics is feasible. The combination of beach profiles, measurements of suspended matter concentration and intensity timestacks allowed the analysis of the short-term evolution of the mud depositional processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号