首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
— Simulation of tsunami propagation and runup of the 1998 Papua New Guinea (PNG) earthquake tsunami using the detailed bathymetry measured by JAMSTEC and adding bathymetric data at depths less than 60 m is carried out, reproducing the tsunami energy focus into Warapu and Arop along the Sissano Lagoon. However, the computed runup heights in the lagoon are still lower than those measured. Even if the error in estimating the fault parameters is taken into consideration, computational results are similar. Analysis by the wave ray method using several scenarios of the source size of the tsunami and location by the wave ray method suggests that a source characterized by small size in water 1,000-m deep approximately 25 km offshore the lagoon, best fits the arrival determined from the interviews with eyewitnesses. A two-layer numerical model simulating the interaction of the tsunami with a landslide is employed to study the behavior of a landslide-generated tsunami with different size sand depths of the initial slide just outside the lagoon. A landslide model with a volume of 4–8 × 109 m3 is selected as the best in order to reproduce the distribution of the measured tsunami runup in the lagoon. The simulation of a tsunami generated in two stages, fault and landslide, could show good agreement with the runup heights and distribution of the arrival time, but a time gap of around 10 minutes remains, suggesting that a tsunami generated by the mainshock at 6:49 PM local time is too small for people to notice, and the following tsunami triggered by landslide or mass movement near the lagoon about ten minutes after the mainshock attacked the coast and caused the huge damage.  相似文献   

2.
A robust numerical model to simulate propagation and runup of tsunami waves in the framework of non-linear shallow water theory is developed. The numerical code adopts a staggered leapfrog finite-difference scheme to solve the shallow water equations formulated for depth-averaged water fluxes in spherical coordinates. A temporal position of the shoreline is calculated using a free-surface moving boundary algorithm. For large scale problems, the developed algorithm is efficiently parallelized employing a domain decomposition technique. The developed numerical model is benchmarked in an exhaustive series of tests suggested by NOAA. We conducted analytical and laboratory benchmarking for the cases of solitary wave runup on simple beaches, runup of a solitary wave on a conically-shaped island, and the runup in the Monai Valley, Okushiri Island, Japan, during the 1993 Hokkaido-Nansei-Oki tsunami. In all conducted tests the calculated numerical solution is within an accuracy recommended by NOAA standards. We summarize results of numerical benchmarking of the model, its strengths and limits with regards to reproduction of fundamental features of coastal inundation, and also illustrate some possible improvements.  相似文献   

3.
Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary   总被引:4,自引:0,他引:4  
On July 10, 1958, an earthquake Mw 8.3 along the Fairweather fault triggered a major subaerial landslide into Gilbert Inlet at the head of Lituya Bay on the southern coast of Alaska. The landslide impacted the water at high speed generating a giant tsunami and the highest wave runup in recorded history. The mega-tsunami runup to an elevation of 524 m caused total forest destruction and erosion down to bedrock on a spur ridge in direct prolongation of the slide axis. A cross section of Gilbert Inlet was rebuilt at 1:675 scale in a two-dimensional physical laboratory model based on the generalized Froude similarity. A pneumatic landslide tsunami generator was used to generate a high-speed granular slide with controlled impact characteristics. State-of-the-art laser measurement techniques such as particle image velocimetry (PIV) and laser distance sensors (LDS) were applied to the decisive initial phase with landslide impact and wave generation as well as the runup on the headland. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into kinematics of wave generation and runup. The entire process of a high-speed granular landslide impact may be subdivided into two main stages: (a) Landslide impact and penetration with flow separation, cavity formation and wave generation, and (b) air cavity collapse with landslide run-out and debris detrainment causing massive phase mixing. Formation of a large air cavity — similar to an asteroid impact — in the back of the landslide is highlighted. A three-dimenional pneumatic landslide tsunami generator was designed, constructed and successfully deployed in the tsunami wave basin at OSU. The Lituya Bay landslide was reproduced in a three-dimensional physical model at 1:400 scale. The landslide surface velocities distribution was measured with PIV. The measured tsunami amplitude and runup heights serve as benchmark for analytical and numerical models.  相似文献   

4.
A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed.  相似文献   

5.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

6.
Numerical analysis of the 1992 Flores Island, Indonesia earthquake tsunami is carried out with the composite fault model consisting of two different slip values. Computed results show good agreement with the measured runup heights in the northeastern part of Flores Island, except for those in the southern shore of Hading Bay and at Riangkroko. The landslides in the southern part of Hading Bay could generate local tsunamis of more than 10 m. The circular-arc slip model proposed in this study for wave generation due to landslides shows better results than the subsidence model, It is, however, difficult to reproduce the tsunami runup height of 26.2 m at Riangkroko, which was extraordinarily high compared to other places. The wave propagation process on a sea bottom with a steep slope, as well as landslides, may be the cause of the amplification of tsunami at Riangkroko. The simulation model demonstrates that the reflected wave along the northeastern shore of Flores Island, accompanying a high hydraulic pressure, could be the main cause of severe damage in the southern coast of Babi Island.  相似文献   

7.
A typical model of the source of a tsunami (“macroseismic source”) is suggested for use in approximate estimation of maximum tsunami height using straightforward numerical modeling. In this paper the model is tested using three actual events: the 1952 North Kuril Is., 1971 Moneron, and 1994 Shikotan earthquakes, which excited considerable tsunamis at Russia’s Far East coasts. Comparison of the maximum tsunami runup values as obtained in numerical experiments with observations of actual tsunamis showed that the numerical model proposed here is suitable for crude estimation of tsunami runup and tsunami waiting times for coastal population centers in the near zone of a tsunami source.  相似文献   

8.
Field survey of the 1994 Mindoro Island,Philippines tsunami   总被引:2,自引:0,他引:2  
This is a report of the field survey of the November 15, 1994 Mindoro Island, Philippines, tsunami generated by an earthquake (M=7.0) with a strike-slip motion. We will report runup heights from 54 locations on Luzon, Mindoro and other smaller islands in the Cape Verde passage between Mindoro and Luzon. Most of the damage was concentrated along the northern coast of Mindoro. Runup height distribution ranged 3–4 m at the most severely damaged areas and 2–4 in neighboring areas. The tsunami-affected area was limited to within 10 km of the epicenter. The largest recorded runup value of 7.3 m was measured on the southwestern coast of Baco Island while a runup of 6.1 m was detected on its northern coastline. The earthquake and tsunami killed 62 people, injured 248 and destroyed 800 houses. As observed in other recent tsunami disasters, most of the casualties were children. Nearly all eyewitnesses interviewed described the first wave as a leading-depression wave. Eyewitnesses reported that the main direction of tsunami propagation was SW in Subaang Bay, SE in Wawa and Calapan, NE on Baco Island and N on Verde Island, suggesting that the tsunami source area was in the southern Pass of Verde Island and that the wave propagated rapidly in all directions. The fault plane extended offshore to the N of Mindoro Island, with its rupture originating S of Verde Island and propagating almost directly south to the inland of Mindoro, thereby accounting for the relatively limited damage area observed on the N of Mindoro.  相似文献   

9.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

10.
Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast   总被引:2,自引:0,他引:2  
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.  相似文献   

11.
Local Tsunamis and Distributed Slip at the Source   总被引:1,自引:0,他引:1  
—Variations in the local tsunami wave field are examined in relation to heterogeneous slip distributions that are characteristic of many shallow subduction zone earthquakes. Assumptions inherent in calculating the coseismic vertical displacement field that defines the initial condition for tsunami propagation are examined. By comparing the seafloor displacement from uniform slip to that from an ideal static crack, we demonstrate that dip-directed slip variations significantly affect the initial cross-sectional wave profile. Because of the hydrodynamic stability of tsunami wave forms, these effects directly impact estimates of maximum runup from the local tsunami. In most cases, an assumption of uniform slip in the dip direction significantly underestimates the maximum amplitude and leading wave steepness of the local tsunami. Whereas dip-directed slip variations affect the initial wave profile, strike-directed slip variations result in wavefront-parallel changes in amplitude that are largely preserved during propagation from the source region toward shore, owing to the effects of refraction. Tests of discretizing slip distributions indicate that small fault surface elements of dimensions similar to the source depth can acceptably approximate the vertical displacement field in comparison to continuous slip distributions. Crack models for tsunamis generated by shallow subduction zone earthquakes indicate that a rupture intersecting the free surface results in approximately twice the average slip. Therefore, the observation of higher slip associated with tsunami earthquakes relative to typical subduction zone earthquakes of the same magnitude suggests that tsunami earthquakes involve rupture of the seafloor, whereas rupture of deeper subduction zone earthquakes may be imbedded and not reach the seafloor.  相似文献   

12.
We undertake detailed near-field numerical modelling of the tsunami generated by the 15 July 2009 earthquake (Mw 7.8) in Fiordland, New Zealand. High resolution bathymetry and topography data at Breaksea and Dusky Sounds, and Chalky and Preservation Inlets are derived mostly from digitised New Zealand nautical charts, Shuttle Radar Topographic Mission (SRTM) 3 arc-second data, and General Bathymetric Chart of the Ocean (GEBCO) 30 s data. A combination of continuous and campaign Global Positioning System (GPS), satellite radar (ALOS/PALSAR InSAR images) and seismology data are used to constrain the seafloor deformation for the initial tsunami condition. This source model, derived independently of DART observations, provides an excellent fit to observed tsunami elevations recorded by DART buoy 55015. The model results in the near field show maximum tsunami elevations in the range 0.5–2.0 m inside the sounds and inlets with maximum flow speeds of 3.0 m/s. Along the open coast, maximum tsunami elevations reach 2.0 m. The high flow speeds through the inlets may change the inlet stratifications and water mass inside the sounds. Media reports and field reconnaissance data show some tsunami evidence at Cormorant Cove, Duck and Goose Coves, and Passage Point.  相似文献   

13.
The problem of tsunami wave runup on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. We present an analysis of the runup characteristics for various shapes of the incoming symmetrical solitary tsunami waves. It will be demonstrated that the extreme (maximal) wave characteristics on a beach (runup and draw-down heights, runup and draw-down velocities and breaking parameter) are weakly dependent on the shape of incident wave if the definition of the “significant” wavelength determined on the 2/3 level of the maximum height is used. The universal analytical expressions for the extreme wave characteristics are derived for the runup of the solitary pulses. They can be directly applicable for tsunami warning because in many cases the shape of the incident tsunami wave is unknown.  相似文献   

14.
Following the 2007, August 15th, M w 8.0, Pisco earthquake in central Peru, Sladen et al. (J Geophys Res 115: B02405, 2010) have derived several slip models of this event. They inverted teleseismic data together with geodetic (InSAR) measurements to look for the co-seismic slip distribution on the fault plane, considering those data sets separately or jointly. But how close to the real slip distribution are those inverted slip models? To answer this crucial question, the authors generated some tsunami records based on their slip models and compared them to DART buoys, tsunami records, and available runup data. Such an approach requires a robust and accurate tsunami model (non-linear, dispersive, accurate bathymetry and topography, etc.) otherwise the differences between the data and the model may be attributed to the slip models themselves, though they arise from an incomplete tsunami simulation. The accuracy of a numerical tsunami simulation strongly depends, among others, on two important constraints: (i) A fine computational grid (and thus the bathymetry and topography data sets used) which is not always available, unfortunately, and (ii) a realistic tsunami propagation model including dispersion. Here, we extend Sladen’s work using newly available data, namely a tide gauge record at Callao (Lima harbor) and the Chilean DART buoy record, while considering a complete set of runup data along with a more realistic tsunami numerical that accounts for dispersion, and also considering a fine-resolution computational grid, which is essential. Through these accurate numerical simulations we infer that the InSAR-based model is in better agreement with the tsunami data, studying the case of the Pisco earthquake indicating that geodetic data seems essential to recover the final co-seismic slip distribution on the rupture plane. Slip models based on teleseismic data are unable to describe the observed tsunami, suggesting that a significant amount of co-seismic slip may have been aseismic. Finally, we compute the runup distribution along the central part of the Peruvian coast to better understand the wave amplification/attenuation processes of the tsunami generated by the Pisco earthquake.  相似文献   

15.
Laboratory experiments of tsunami runup on a circular island   总被引:2,自引:0,他引:2  
Laboratory experiments of a 7.2-m-diameter conical island were conducted to study three-dimensional tsunami runup. The 62.5-cm tall island had 1 on 4 side slopes and was positioned in the center of a 30-m-wide by 25-m-long flat-bottom basin. Solitary waves with height-to-depth ratios ranging from 0.05 to 0.20 and source lengths ranging from 0.30 to 7.14 island diameters were tested in water depths of 32 and 42 cm. Twenty-seven capacitance wave gages were used to measure surface wave elevations at incident and four radial transects on the island slope. Maximum vertical runup measurements were made at 20 locations around the perimeter of the island using rod and transit. A new runup gage was located on the back or lee side of the island to record runup time series.  相似文献   

16.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   

17.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

18.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

19.
The 1771 Yaeyama tsunami is successfully reproduced using a simple faulting model without submarine landslide. The Yaeyama tsunami (M 7.4), which struck the southern Ryukyu Islands of Japan, produced unusually high tsunami amplitudes on the southeastern coast of Ishigaki Island and caused significant damage, including 12,000 casualties. Previous tsunami source models for this event have included both seismological faults and submarine landslides. However, no evidence of landslides in the source has been obtained, despite marine surveying of the area. The seismological fault model proposed in this study, describing a fault to the east of Ishigaki Island, successfully reproduces the distribution of tsunami runup on the southern coast of the Ryukyu Islands. The unusual runup heights are found through the numerical simulation attributable to a concentration of tsunami energy toward the southeastern coast of Ishigaki Island by the effect of the shelf to the east. Thus, the unusual runup heights observed on the southeastern coast of Ishigaki Island can be adequately explained by a seismological fault model with wave-ray bending on the adjacent shelf.  相似文献   

20.
We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ~500-year empirical record compiled by O’Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0–30% regionally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号