首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-supported earth-retaining structure using stabilizing piles (SSR is used from here) has the advantages of less deformation and less internal force compared with conventional cantilever retaining structure. It is easier to conduct the excavation when SSR is used for an excavation instead of using braced excavation with struts. The SSR is better than other methods to the 10 m shallow excavation depth in terms of economical and constructional efficiency when the ground is not very soft. However, this SSR method lacks a theoretical basis in terms of geotechnical engineering. The objective of this study is to develop a method of analysis by laboratory model tests. A variety of model tests were performed in order to analyze the behavior of SSR and the ground, and to measure the stress acting on stabilizing piles relative to excavation steps and earth pressures on the wall. The analysis reveals the failure mechanism of a wedge and then suggests a method for calculating a virtual supported point. These findings were incorporated into a method for analyzing retaining wall, stabilizing piles, and beams connecting two structures. Future research is geared toward developing a design program that uses the analytical methodology for this SSR.  相似文献   

2.
为研究钻井船插桩对邻近平台群桩相互作用的影响,采用耦合欧拉拉格朗日(CEL)方法对桩靴贯入黏土层时邻近群桩中各桩荷载分担比、桩头附加位移及两桩相互作用系数进行了分析。首先通过对缩尺模型试验的数值分析,验证了CEL方法的可行性;然后进一步分析了桩靴贯入黏土层时对邻近群桩相互作用的影响;最后探讨了净间距、桩间距对群桩相互作用的影响。结果表明,在桩靴贯入中,前桩的荷载分担比大于后桩,且桩靴贯入至一定深度后,当净间距越小或桩间距越大时,前桩的荷载分担比越大、后桩的荷载分担比越小,但各桩的荷载分担比随桩靴贯入深度增加时的变化规律不变;净间距越大,桩头附加位移及相互作用系数越小;在桩靴贯入时,由于受群桩遮拦效应的影响,桩头附加位移及相互作用系数随桩间距的变化规律同插桩前有所不同,当桩间距大于3倍桩径时,随桩间距的增加而减小,当桩间距小于3倍桩径时,随桩间距的增加而增大。  相似文献   

3.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

4.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

5.
为研究水流作用下斜桩周围局部冲刷特性及流场变化并掌握斜桩同垂直桩的差异,本研究在不同流速条件下开展了包含反斜桩、垂直桩、正斜桩等多种工况的水槽试验,测量分析了斜桩的冲刷历时曲线、床面形态、沿程流速分布、最大冲刷深度等数据.结果表明:清水条件下斜桩周围局部冲刷坑及桩后沙丘尺度明显减小;斜桩桩前最大冲刷深度随倾角的增加而逐...  相似文献   

6.
Quadrant front face pile supported breakwater is a combination of semicircular and closely spaced pile breakwaters which couples the advantages of these two types. This type of structure consists of two parts. The bottom portion consists of closely spaced piles and the top portion consists of a quadrant solid front face on the seaside. The leeward side of the top portion with a vertical face would facilitate the berthing of vessels. An experimental investigation on this breakwater model in a wave flume is carried out for three water depths. For each water depth, three different spacings between the piles were adopted for the investigation. The dynamic pressures exerted along the quadrant front face due to regular waves were measured. The variation of dimensionless pressures with respect to scattering parameter for different gap ratio (spacing between the piles/diameter of pile) and for relative pile depth (water depth/pile height) are presented and discussed. In addition, the dimensionless total forces exerted on the breakwater model as well as its reflection characteristics as a function of scattering parameter are reported.  相似文献   

7.
Bridge scour is recognized as one of the key factors that causes structure failures, which in turn leads to economic and life loss. In this study, flume tests of four typical arrangements of pier groups embedded in sand under steady clear water conditions were carried out to observe the process and maximum depth around piles of scour. The investigation included single pile, tandem piles, side-by-side piles, and 3 × 3 pile groups. Different conditions including different pile spacing, flow velocity, and water depth are considered. Moreover, the evaluation of design methods from the United States, New Zealand, and China was analyzed and compared through experimental and mathematical methods. The experimental results show that shielding and jetting effects are obvious in pile groups, which become less obvious with the increase of pile spacing. The dynamic process of scour around single pile and pile groups are quite different. Meanwhile, most of the predicted scour depths by these equations tend to be much larger than those from field data, which may lead to overdesign and consequently high construction cost. In addition, data from this study and some laboratory experiment data from previous work were used to derive the correction factors of a new scour prediction equation, which can be used to estimate the scour in a sand bed and agree well with the observations.  相似文献   

8.
A new type of quay wall structure has been proposed to improve the seismic resistance capability of existing sheet pile quay wall structures. The new structure adopts a combination of stabilized soil and geogrid, and this structure is referred to simply as “SG-WALL”. This paper presents a numerical comparative study on the seismic performances of quay wall structures between the newly developed SG-WALL and the traditional anchor pile-reinforced structure. The calculated results, including displacement of sheet pile, ground settlement, bending moment and stress of sheet pile, and excess pore water pressure, were analyzed and discussed. It was shown that both types of improvement methods can effectively reduce the residual displacements of sheet piles after earthquakes. The residual displacements at the top of the sheet piles in SG-WALL structure and the anchor pile-reinforced structure decreased by 35.6 and 38.2%, respectively. In addition, the SG-WALL structure can more significantly reduce the ground settlement due to earthquakes. The maximum ground settlement in SG-WALL structure and the anchor pile-reinforced structure decreased by 67.3 and 58.9%, respectively.  相似文献   

9.
- Generally the toe of the bank slope in front of the pile- supported pier has to be dredged to meet the requirements of water depth for the berth of ships, while the top of the slope in rear of the pier must be backfilled and elevated to make connections with land transportation. Then the natural state of equilibrium of the slope is destroyed, and some deformation and displacement are unavoidably induced in the soil mass which will exert an undesirable influence on the pile foundation of the pier. This is a typical problem of the interaction between the so-called "passive pile" and surrounding soil, and has been scarcely studied in the literature of geotechnical engineering. In this paper, field observation, model tests and numerical analysis conducted by the authors to study the interaction between pile-supported pier and bank slope are briefly described and some preliminary results are presented.  相似文献   

10.
Two- and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier.  相似文献   

11.
Pile groups are frequently used to support bridge decks. Scour in the vicinity of piles is the main cause for the bridges failure. In this research, to address the effects of uniform and nonuniform pile spacing on the equilibrium scour depth, laboratory experiments were carried out under steady clear-water conditions. For this purpose, scour depth produced by pile group with various pile spacing and arrangement was investigated using a laboratory flume. Flume bed was covered by uniform sediments with a median size of 0.9?mm and 0.2?m thickness. Flow discharge and velocity as well as scour depth were recorded in each experiment and the data were analyzed. The results showed that the pile spacing influences the local scour depth and with increase in uniform and transverse (perpendicular to the flow) spacing, the maximum scour depth was reduced. The pile spacing variation in line with the flow has a minor effect on scour depth. In addition, the pile spacing perpendicular to the flow was with the most influences on scour depth. The results of this research can be used by engineers to optimize the design of bridges.  相似文献   

12.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   

13.
The in-situ application of micropiles has gradually increased in limited spaces of downtown areas because the micropile has various advantages, such as low vibration and noise and compact machine size. In this study, model tests were carried out to understand the reinforcement effect induced by the mechanical interaction between the micropile and soil. The micropiles were installed in the soil adjacent to footings. Factors such as reinforced range (W) with piles, spacing (S) between piles, the installed angle (θ) of piles, and pile length (L) were considered variables in the tests. The reinforced angle (θ) was a more critical factor than the others for restraining the settlement and increasing soil stiffness in the model test results. The reinforcement effect rapidly increased around the reinforced range (W) of 2B (B: the width of a footing), the reinforced angle (θ) of 45 ~ 75°, and the pile length (L) of 3B. Based on the results of the experimental analyses, the purpose of this study is to improve the reinforcement efficiency of micropiles by recommending the most effective pattern and design method for installing them.  相似文献   

14.
The stabilization of slopes by placing piles is one of the most innovative and effective slope reinforcement techniques in the coastal engineering in recent years. Due to the simplicity and efficiency, limit analysis method is the most common approach for assessing the stability of slopes. However, the majority of existing limit analysis methods is limited to slope without the presence of piles. In this technical note, a novel upper-bound limit analysis method was proposed to access the stability of three-dimensional slopes reinforced with piles incorporating the admissible rotational failure mechanism where toe failure, face failure, and base failure were taken into account. The effects of key designing parameters, e.g., pile location, pile spacing, slope angle, slope width on the stability of earth slopes, and geometry of critical slip surface were presented and discussed. The results demonstrate that the proposed approach is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of piles stabilizing the unstable slopes.  相似文献   

15.
Abstract

This study investigates the impact of pile cap size, soft layer thickness and pile strength on load transfer and settlement behaviors of embankments supported by floating and fixed T-shaped deep cement mixing piles and conventional DCM piles under volume control. Preliminary investigation is performed by a series of small-scale physical model tests. The results reveal that the differential settlement can be substantially reduced with an enlarging pile cap as a result of larger embankment load transferred to the piles. The extended numerical analysis results demonstrate that the pile efficacy is related to the individual pile bearing capacity, which, in turn, depends on the pile cap size. The soft layer thickness has an insignificant effect on differential settlement but a significant effect on average settlement, while the pile strength plays an important role in differential settlement only when the cap size is not very large. Shape factor of at least 3.0 is recommended to ensure the reduction in differential settlement and minimize the effect of the change in pile strength.  相似文献   

16.
何启洪  赖禺  周松望 《海洋工程》2016,34(6):123-130
采用CEL大变形非线性有限元方法并结合非线性地基梁模型对海洋石油941钻井船在番禺10-2平台钻井插桩时对邻近导管架平台群桩的影响进行了分析,并得到以下结论:1)钻井船插桩过程中,桩身最大位移及出现的位置随钻井船插桩深度增加而下移且钻井船插桩位置与群桩距离越近,对桩的影响越大;2)在插桩过程中,桩身最大弯矩出现的位置与桩身最大位移出现的位置一致,而桩身最大剪力出现的位置较桩身最大弯矩出现的位置偏下;3)与没有插桩影响的群桩相比,桩身最大弯矩与桩身最大剪力明显增加。  相似文献   

17.
In this article, two full-scale pile loading tests were conducted to observe the field performance of the super-long bored piles, and a simplified approach for nonlinear analysis of the load-displacement behavior of a single pile was presented. The field tests on piles indicates that, under the maximum test load, more than 70% of the pile top settlement is caused by the compression of pile shaft. For practical purposes, the pile top settlement can be reduced through improving the pile shaft strength. When the load reaches the maximum test load, the proportion of the load carried by the pile tip is approximately 30%. The super-long pile is functioning as an end-bearing friction pile. The skin friction at shallow depth is fully mobilized and decreases from a peak value with increasing load. However, the skin friction of deeper soil is not fully developed due to less relative displacement. Furthermore, a BoxLucas1 model is used to capture the relationship between unit skin friction and pile-soil relative displacement, whereas a hyperbolic model is used to describe the relationship between toe stress and pile base displacement. Based on the BoxLucas1 model and the hyperbolic model, a load transfer method is used to clarify the response of a single pile, and a computational flow chart is developed. The efficiency and accuracy of the present method is verified using the field tests on piles. The proposed simple analytical approach is economical and efficient, resulting in savings in time and cost.  相似文献   

18.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

19.
A fundamental study of pile–soil systems subjected to lateral loads in offshore deposit was conducted using experimental tests and numerical analysis. The emphasis was on the soil–pile rigidity of a laterally loaded pile in marine clay. Rigid- and flexible-pile analyses were conducted for comparison. A framework for determining the lateral load transfer curve (py curves) is proposed based on both field and laboratory model tests. A numerical analysis that takes into account the proposed py curves was performed for the pile flexibility parameters such as pile diameter, pile length, pile-bending stiffness, and the modulus of subgrade reaction. Based on the analysis, it is shown that the differences in bending moment and lateral displacement are more significant for flexible piles rather than rigid piles. It was found that the py curves influence the behavior of flexible piles more than rigid piles, thus the magnitude and distribution of the py curves are significantly important in flexible pile design.  相似文献   

20.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号