首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Large diameter monopiles are typical foundation solutions for offshore wind turbines. In design of the monopile foundations in sand, it is necessary to understand the drainage conditions of the foundation soil under the design loading conditions as the soil performance (strength and stiffness) is highly dependent on the drainage conditions. This paper presents a numerical investigation into this issue, with a purpose to develop a simple design criterion for assessing the soil drainage conditions around a monopile in sand. It is found that for typical monopile foundations in sand, the drainage condition during a single load cycle is generally expected to be undrained. However, the current state-of-practice uses p-y springs derived for drained soil responses for monopile design. The impact of this discrepancy on monopile foundation design was evaluated and found to be insignificant due to the relatively low level of loading as compared to the capacity of the soil.  相似文献   

2.
p-y 曲线法在水平受荷桩的设计中得到了广泛应用,然而近年来在海上风机超大直径单桩基础设计中受到了学术界和工程界的质疑,当前研究表明,桩基尺寸是产生这一问题的主要原因。本文通过三维数值仿真技术,研究了砂土地基中水平受荷桩-土作用特征的演变规律,探讨了当前超大直径单桩设计方法存在的主要问题及产生的原因。计算结果显示:超大直径单桩基础因其桩径大、长径比(入土长度与直径的比) 小的尺寸特征,在水平荷载作用下桩土作用具有明显的三维空间效应,即除受水平向土反力外,还受到桩端水平向的摩擦力、沿桩身不均匀摩阻力产生的抵抗力矩及桩底不均匀土反力提供的抵抗力矩;进一步研究表明,后三类抗力对桩基水平承载力的贡献占比与桩基尺寸有关,即桩基直径越大、长径比越小,这些抗力的贡献越大。因此,在水平受荷超大直径单桩承载特性计算与分析的过程中,除当前水平向p-y 弹簧提供的抗力外,还应考虑桩底的水平剪力、桩身摩擦力和桩底反力不平衡产生的抵抗力矩。  相似文献   

3.
为提高基础利用率增加海上风电设施的可行性,对楔形单桩基础竖向承载力特性进行研究分析。采用PLAXIS 3D 有限元软件建立楔形单桩基础模型,从桩侧摩阻力、桩侧法应力及土体位移对比分析楔形单桩基础与等截面单桩竖向承载特性差异,并探讨内摩擦角、楔角及楔高对承载力的影响。研究表明:楔形单桩基础竖向承载力高于等截面单桩基础,且承载力随着楔角、楔高的增大而增大,提高率最大达24.786%。倾斜侧壁的引入改变了桩侧摩阻力的传递规律;倾斜侧壁挤密桩周土体,桩侧摩阻力与法向应力增大,从而有效提高单桩基础的竖向承载力。研究成果可为今后海上风电单桩基础截面型式的设计提供参考。  相似文献   

4.
Global warming is expected to change the wind and wave patterns at a significant level, which may lead to conditions outside current design criteria of monopile supported offshore wind turbine (OWT). This study examines the impact of climate change on the dynamic behavior and future safety of an OWT founded in clay incorporating dynamic soil–structure interaction. A statistical downscaling model is used to generate the time series of future wind speed and wave height at local level. The responses and fatigue life of OWT are estimated for present and future periods and extent of change in design is investigated at offshore location along the west coast of India. Wind speed, wave height, and wave period data are collected from the buoy deployed by Indian National Centre for Ocean Information Services and the future climate for the next 30 years is simulated using the general circulation model corresponding to Special Report on Emission Scenarios A1B scenario. The OWT is modeled as Euler–Bernoulli beam and soil–structure interaction is incorporated using nonlinear p-y springs. This study shows that changes in design of OWT are needed due to increased responses owing to the effect of climate change. Fatigue life is found to be decreased because of climate change.  相似文献   

5.
王涛  张琪  叶冠林 《海洋工程》2022,40(1):93-103
大直径单桩基础是海上风电应用广泛的一种基础形式,严格控制桩基泥面处的位移是保证基础稳定和风机安全运营的关键因素.通过数值方法建立了单桩—海床的三维模型,将可以描述海洋砂土超固结性和结构性的弹塑性本构模型通过UMAT子程序嵌入有限元软件ABAQUS中,桩基承受的波浪荷载通过Morison方程进行计算模拟.针对无波浪荷载、仅作用于海床的波浪荷载、同时作用于桩基和海床的波浪荷载三种情况,分析了海床土的动力响应以及桩基的水平位移之间的差异,探讨了海床土体参数对桩基水平变形的影响.研究结果表明海床土体液化会导致桩基水平变形增加,海床土渗透性、超固结性、结构性对桩基水平位移影响显著,研究成果可为海上风电单桩基础的设计与运维提供参考.  相似文献   

6.
The eigenfrequency of offshore wind turbine structures is a crucial design parameter, since it determines the dynamic behavior of the structure and with that the fatigue loads for the structural design. For offshore wind turbines founded on monopiles, the rotational stiffness of the monopile-soil system for un- and reloading states strongly affects the eigenfrequency. A numerical model for the calculation of the monopile’s behavior under un- and reloading is established and validated by back-calculation of model and field tests. With this model, a parametric study is conducted in which pile geometry, soil parameters and load conditions are varied. It is shown that of course the rotational stiffness varies with mean load and magnitude of the considered un- and reloading span, but that for most relevant load situations the initial rotational stiffness of the monopile system, i.e. the initial slope of the moment-rotation curve for monotonic loading, gives a good estimate of the actual stiffness. Comparisons of different p–y approaches show that the ordinary API approach considerably underestimates the initial stiffness, whereas the recently developed ‘Thieken’ approach and also the ‘Kallehave’ approach give a much better prediction and thus might be used in the design of monopiles in sand.  相似文献   

7.
Large monopiles are used as foundations for offshore wind turbines and are generally designed with a tapered section or conical shape. Some loss of driving energy is expected to occur during installation of these structures due to the submerged section of the tapered monopile. The current literature on this subject is limited and indicates rather large losses compared to field observations.A numerical model of the monopile–water–soil system was set up in the general-purpose finite element package Abaqus. By simulating the hammer impact and the resulting stress wave propagation through the monopile and water, the energy losses to be expected can be calculated accurately. The model was verified against independent finite element analyses and experimental data.A parametric study was performed and the effect of hammer characteristics, submerged monopile length and monopile geometry on the driving energy losses were quantified. The results enable a simple relationship between the energy losses and the monopile geometry to be proposed which increases linearly with pile diameter, taper angle, and submerged length. The losses are typically on the order of 0.15–0.3% per metre submerged length for large tapered monopiles.  相似文献   

8.
海上风力发电单立柱支撑结构拟静力分析   总被引:1,自引:0,他引:1  
海上风电支撑结构不同于一般海洋结构物,它受到复杂的风机气动荷载、机械控制荷载和海洋环境荷载的多重作用。文章针对海上某单立柱风电支撑结构,通过分析其结构固有频率的约束限制以及外环境荷载的动力特性,综合考虑外环境荷载尤其是风机荷载的动力放大影响,给出海上单立柱风电支撑结构的拟静力分析思路。并进行极端及操作工况下支撑结构在风、浪、流环境荷载组合作用的应力计算和强度分析。提出该种结构在使用现有海洋结构物设计规范和风机设计规范时的注意事项。该分析比较结果及结论可作为海上类似风电支撑结构的设计参考。  相似文献   

9.
Pile foundations subjected to cyclic load is an age-old problem dealt with for decades by geotechnical engineers. The ocean environment necessitates the piles supporting offshore structures to be designed against lateral cyclic loading initiated by wave action. Substantial experimental and analytical investigations have already been conducted by the author and other researchers. The quasi-static load reversal induces deterioration in the strength and stiffness of the soil-pile system introducing progressive reduction in the bearing capacity as well as settlement of the pile foundation, the degree of such degradation has been observed to be a function of the cyclic load parameters and the type of soil. Based on these observations, a design recommendation has been attempted in this paper for piles subjected to cyclic load in cohesive soil.  相似文献   

10.
Suction caissons are considered as an alternative foundation solution for offshore wind turbines. In the present study, three-dimensional finite element (FE) analyses are performed to assess the behavior of a bucket foundation and soil supporting the bucket under cyclic and monotonic loading conditions. A parametric study is also performed for a wide range of bucket geometries and two different soil densities. The results indicate that bucket geometry and soil properties significantly affect the foundation response due to cyclic loading conditions. The bucket with the smallest geometry installed in medium dense soil exhibits the lowest stiffness in initial loading and then with the progress of cyclic loads experiences lower stiffness compared to the caissons with larger geometries. The sensitivity of the foundation response to the soil density is higher than its geometry. The bucket under the lowest vertical load experiences the lowest stiffness in both virgin loading and during the progress of cyclic loads. The highest soil displacement is observed near the lid at the interior of the bucket. Stresses caused by cyclic loading belong to certain ranges. Additionally, increases in the skirt length result in increases in the stress ranges and shift the range to the right side. With respect to the monotonic loading conditions, normalized diagrams are proposed that can be used for the preliminary design of suction bucket foundations.  相似文献   

11.
A new approach to the analysis of pile foundations, developed recently for the analysis of a pile supported offshore structure, is described. The method uses a coupled soil-pile analysis which takes into account the non-linear resistance of the pile to lateral deformation and the effect of progressively increasing pore water pressures on that resistance. The analysis allows also for radiation of energy away from the site. Typical of results given in the paper are: (1) the effect of pore water pressure increases on the API cyclic loading curves, (2) the degradation in lateral stiffness due to pore pressure increases for piles with fixed and free heads, (3) variations in deflections and moments with depth due to pore water pressure from those predicted using current API procedures.  相似文献   

12.
A series of centrifuge tests were performed to investigate the response of a free-head monopile due to cyclic lateral loading in normally consolidated clay. By linking the maximum reaction-force point of the final cycles in all tests with various amplitudes, a postcyclic reaction-force curve is obtained, which can be used to assess the postcyclic remolded lateral stiffness. To numerically analyze the tests, a strength degradation model of the clay is calibrated by the T-bar cyclic test. However, this model is T-bar-dependent, which is unable to capture the degrading behavior of the monopile stiffness. Thus, a modification approach is proposed based on the upper bound theory, and the modified model is further combined with finite element analysis to simulate the cyclic behavior of the model pile. The simulation results show similar degrading trend and consistent postcyclic remolded lateral stiffness with the model tests. This further demonstrates that the remolded lateral stiffness mainly depends on the soil remolded strength, which is one of the parameters calibrated by the T-bar tests. Based on this finding, a simplified numerical analysis is proposed, which can predict the postcyclic reaction-force curve by performing one monotonic loading instead of modeling the whole process of cyclic loading.  相似文献   

13.
As an appropriate type of foundation for offshore wind turbines (OWTs), wide-shallow composite bucket foundation (WSCBF) is cost-competitive, and it has a unique and special substructure that comprises seven internal rooms arranged in a honeycomb-like structure. In this study, the cyclic behavior of WSCBF for OWTs embedded in saturated clay was investigated using a large-scale model subjected to lateral cyclic loading. The responses of foundation under constant- and various-amplitude cyclic loadings were recorded in terms of displacements, rotations, and bending moments. The variations in stiffness and damping were obtained, and a collaborative bearing mechanical model between the bucket and soil was considered, which was beneficial for improving the stiffness of the whole structure. Accumulative deformation was found to have little effect on the bearing capacity of the foundation. Dynamic analysis in frequency domain was further performed on both moment and rotation data, and the complex, frequency-dependent impedance was also studied.  相似文献   

14.
This study aims to investigate a hybrid gravity base foundation to support offshore wind tower. A new hybrid gravity base foundation considered in this study has five component piles, referred to as ‘piled gravity base foundation’. The three-dimensional finite element analyses were carried out for the piled gravity base foundation subjected to a combined load with a lateral load and overturning moment. The parametric analyses were undertaken varying the loading height and direction, the rigidity of the piled gravity base foundation, the field soil layers, and the clay strength. Overall, the response of the piled gravity base foundation was significantly influenced by the interaction between the cone base piles and the surrounding soil. The increased strength of the soil led to a significant reduction of the pile and gravity base foundation responses, in terms of the bending moments, axial forces, lateral displacements, and rotations.  相似文献   

15.
复合加载下桶形基础循环承载性能数值分析   总被引:1,自引:0,他引:1  
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。  相似文献   

16.
Abstract

This study established a Couple Eulerian–Lagrange model to simulate monopile vibratory penetration for the investigation of soil plugging effect during high-frequency penetration of monopiles for wind turbine. Simulation analysis is focused particularly on soil plugging effect of a large diameter monopile during vibratory penetration into sand, clay, or layered soil. The results of the numerical simulation show that soil plugging effect is unlikely to occur during monopile penetration into the clay soil, while partial soil plugging may occur during the sand penetration. Penetration resistance at the pile toe is transferred to the radial stress around the pile wall. At a critical point penetration process, internal shaft friction becomes larger than external shaft friction. Moreover, radial pressure factors increase during partial soil plugging effect. For layered soil, the topsoil not only has great influence on the soil plugging effect, but also affects shaft friction in the subsoil during monopile penetration.  相似文献   

17.
This paper presents an experimental study on the wave-induced behavior of monopiles. Laboratory experiments were conducted at the constant initial state of the sandy beds in a wave flume with a soil trench. The responses of the pile-head displacement, the pile strain and the pore water pressure on regular waves were investigated. The experimental results show that the monopiles lean along the direction of the wave progression and the inclination increases with the duration of wave actions. The pile-head displacement (consisting of the permanent displacement and cyclic displacement) increases as the wave height increases, especially more significantly for the permanent displacement. The head-fixed pile suffers from larger wave load than that on the head-free pile under the same wave condition. Increasing pile diameter or fixing fins on the monopile is effective in reducing the pore water pressure in the upper part of the bed and the permanent displacement.  相似文献   

18.
桩基础水平向承载力的计算是海洋工程中桩基设计的重要组成部分。论文在搜集了大量平台建设资料的基础上,以现有的桩基水平向承载力的设计计算方法为依据,进行了水平向承载力的可靠度研究。对影响可靠指标的各个因素进行了灵敏度分析。  相似文献   

19.
王宾  李红涛  刘嵩  万德成 《海洋工程》2020,38(3):94-101
针对渤海湾某风电场的海上固定式风机支撑结构,采用适用于大直径单桩结构的PSI曲线模拟桩土相互作用,并采用SACS软件建立支撑结构的动力分析模型。首先对支撑结构进行模态分析;其次考虑海冰结构的随机振动作用模式,根据适用于渤海湾的随机冰力谱构造随机冰载荷时程曲线,基于半耦合的时域方法,采用SACS软件对支撑结构进行冰激振动分析,输出塔筒顶部加速度、单桩基底剪力及倾覆力矩等响应参数的时程曲线和响应功率谱;最后针对冰厚、冰速和海冰强度等海冰参数对支撑结构的冰激振动进行敏感性分析。研究结果表明,在随机振动模式下,冰载荷及结构动力响应对冰厚和海冰强度较为敏感,在进行冰激振动分析时应合理确定冰厚和海冰强度等参数。  相似文献   

20.
吸力基础是海洋工程中新型的一种基础型式,广泛应用于海洋平台、海洋浮动式结构等,近年来,也被作为浅海离岸风力发电工程的基础。吸力基础易遭受较大的水平动力荷载和弯矩,从而可能产生较大水平位移和转角;同时,由于海床冲刷,会降低其承载能力。为克服这些不足,提出了一种新型吸力基础———裙式吸力基础,把分析传统吸力基础砂土中的沉贯方法,拓广到裙式吸力基础中,研究该基础型式在砂土中的可沉贯性以及所需的吸力;并与同情况下的传统吸力基础进行了比较,证明了所提出的裙式吸力基础具有较好的沉贯性能,具有工程实践推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号