首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
洋底板块运动是地球动力学和全球变化研究的重要内容.本文根据质量迁移与地球外部重力场变化的对应关系,利用不同时期测高资料推算的1995—2019全球海洋重力场变化结果,反演分析全球洋底板块运动特征.研究表明,板块汇聚边界、板块内无震海岭、海山群、断裂带等区域重力异常变化显著,而在板块离散边界无明显变化趋势;西南印度洋中脊、大西洋中脊、中印度洋中脊等地区重力异常垂直梯度变化显著,且在西太平洋俯冲带、部分海岭区域也存在明显变化,其空间分布与地形基本吻合.海洋重力场变化整体上准确反映了全球洋底板块构造运动.相较于重力异常变化反演结果,重力垂直梯度的变化能够更为准确地反映洋底板块运动特征,特别是在洋中脊区域,扩张速率越小,垂直重力梯度变化越显著.此外,详细讨论了测高海洋重力场不确定因素对洋底板块运动分析结果的影响,海面坡度改正是主要因素之一.  相似文献   

2.
The distribution of heat flow in the North Pacific Ocean has been examined, and a map of geothermal and geomagnetic fields for the Bering Sea as it is known today has been made. Reliable data are lacking regarding the time of origin for features of oceanic and continental genesis in the Bering Sea, which is an obstacle to the study of geodynamic processes in the North Pacific. Heat flow data were used to yield numerical estimates for the age of seafloor features in the Bering Sea: the Kamchatka Basin (21 Ma), Shirshov Ridge (95 Ma for the northern part and 33 Ma for the southern), the Aleutian Basin (70 Ma), Vitus Rise (44 Ma), Bowers Ridge (30 Ma), and Bowers Basin (40 Ma). These age estimates are corroborated by combined geological, geophysical, and plate kinematic data. A thermochemical model of global mantle convection has been developed in order to perform a numerical simulation of the thermal process involved in the generation of extended regional features in the North Pacific (the Emperor Fracture Zone, Chinook Trough, etc.). The modeling suggests a plume-tectonic origin for these features, yielding the optimal model for the tectonic evolution of the North Pacific. An integrated geological and geothermal analysis leads to the conclusion that the northern and southern parts of the Shirshov Ridge are different, not only in geologic age, but also in tectonic structure. The northern part is of imbricated-thrust terrane origin, while the southern part is of ensimatic island-arc origin, similar to that of Bowers Ridge. The seafloor of the Aleutian Basin is an outlier of the Upper Cretaceous Kula plate where, in the Vitus Rise area, backarc spreading processes originated during Eocene time. The terminating phase of activity in the Bering Sea began about 21 Ma by spreading in the older seafloor of the Kamchatka Basin. We developed plate-tectonic reconstructions of evolution for the North Pacific for the times 21, 33, 40, and 70 Ma in the hotspot system based on age estimates for the seafloor features derived from heat flow data and modeling of the thermal generation of regional faults, as well as on an analysis of geomagnetic, tectonic, and geological data.  相似文献   

3.
The Alpha Ridge is one of three subparallel trending ridges that cut the Arctic Ocean. It is roughly Late Cretaceous to Eocene in age, and seismic refraction records suggest it comprises a thick sequence of oceanic crust. During the 1983 CESAR expedition 20 similar samples of acoustic basement were dredged from the walls of a major graben of the Alpha Ridge, at one site. These are the only basement samples ever recovered from the ridge and provide the first direct evidence for its nature, composition and possible origin.The basement samples are highly altered pyroclastic rocks composed almost entirely of basaltic volcanic clasts with little matrix. Although the rocks are highly altered, most primary textures and structures are preserved. Most clasts are highly amygdaloidal to scoriaceous, fine grained to glassy, and angular to subround with rare vesicle controlled boundaries. Little reworking is suggested because a single clast type predominates, many of the clasts are subangular, and any amount of reworking would result in destruction of the delicate scoriaceous clasts.Rare clinopyroxene phenocrysts comprise the only unaltered portion of the rocks. They are salitic in composition (Wo49–53, En32–41, Fs11–15), with significant amounts of Ca, Al and Ti. Salitic clinopyroxenes are typical of alkalic basalts.Interpretation of the whole rock geochemistry based on relatively immobile elements, (Nb, Zr, Tio2, and Y), and chondrite-normalized incompatible trace element and REE patterns indicates that the volcanic rock fragments are of alkalic basalt. Geochemical discriminators suggest a within-plate tectonic setting.Textural evidence suggests that the CESAR basement rocks were sampled from a rapidly emplaced submarine fallout deposit that was erupted at a depth at least less than 800 m and likely less than 200 m. High extrusive rates would have been required to build the ridge up to shallow depth prior to the cessation of volcanism. The alkalic affinity of the rocks strongly suggests that the Alpha ridge was not formed by volcanism at an island arc or a mature spreading centre. It is also unlikely that it formed as a “leaky” fracture zone. Alkalic basalts, however, are commonly associated with various types of oceanic aseismic ridges. It is suggested that the Alpha Ridge is an aseismic ridge that formed due to voluminous hotspot volcanism as spreading began in the Canada Basin. Such hotppot activity may have been responsible for initiating the rifting, breakup, and dispersal that eventually formed the Canada Basin.  相似文献   

4.
Plate kinematics: The Americas,East Africa,and the rest of the world   总被引:3,自引:0,他引:3  
Euler vectors (relative angular velocity vectors) have been determined for twelve major plates by global inversion of carefully selected sea-floor spreading rates, transform fault trends, and earthquake slip vectors. The rate information comes from marine magnetic anomalies less than 5 m.y. old, so the motions are valid for post-Miocene times. Plate motions in a mean hotspot frame of reference have also been determined, and statistical confidence limits for all the Euler vectors estimated. Among the consequences of the global motion model is the conclusion that fast-spreading ridges (separation rates greater than 3 cm/yr) have plate motion nearly perpendicular to the strike of the ridge and magnetic anomalies. Four more slowly separating ridges have an average obliquity of spreading of almost 20°.For several plate boundaries, results that differ from previous studies are in agreement with geological evidence. The North and South American plates converge slowly about a pole east of the Antilles and near the Mid-Atlantic Ridge. The results for Africa versus Somalia imply slow east-west extension on the East African Rift Valleys. The pole for motion of Eurasia relative to North America is located near Sakhalin, in accordance with evidence from Siberia and Sakhalin.  相似文献   

5.
~~Global tectonics and the plate motion obtained from the ITRF97 station velocity vectors@马宗晋 @任金卫 @张进~~  相似文献   

6.
A PbSrNd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other.The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the “central Indian Ocean” islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.  相似文献   

7.
It has been suggested that Porcupine Ridge, west of Ireland, represents a continental fragment displaced westwards relative to Europe at an early stage in the opening of the North Atlantic. This hypothesis presents difficulties, particularly in relation to the magnetic evidence for the onset of seafloor spreading at these latitudes. However, the structure of the Irish continental margin, so far as it is known, appears consistent with a westward rotation of Porcupine Ridge by some 23°; and there are still grounds for supposing that the adjacent Rockall Trough may represent a locus of Mesozoic seafloor spreading with which the rotation could have been associated.  相似文献   

8.
Some very pronounced crustal inhomogeneities have been found in the North Sea and in Greenland, in regions which were adjacent to each other before the opening of the North Atlantic Ocean by sea-floor spreading. Some of these regions of inhomogeneities are zones of relatively high seismicity, while others are aseismic. In the North Sea, the Viking Graben has earthquakes, while its southern continuation, the Central Graben, is almost aseismic. In eastern Greenland, there are only few earthquakes near the Mesozoic graben, while there is a prominent earthquake zone at the coast line in north-eastern Greenland. It is concluded that, superposed on the apparent similarities in the two regions, some differences in stress conditions or crustal weakness patterns must exist.  相似文献   

9.
Comparison with the Red Sea and other regions suggests that a series of partly fault-bounded ridges and basins in the Hebridean and Irish Sea regions are related to tectonic uplift and collapse associated with Palacogene sea floor spreading in the North Atlantic. Three episodes of block faulting involving the formation of horsts and grabens are tentatively correlated with phases of Mesozoic and Tertiary ocean floor spreading.  相似文献   

10.
Models of spreading ocean ridges are derived by Bayesian gravity inversion with geophysical and geodynamic a priori information. The aim is to investigate the influence of spreading rate, plate dynamics and tectonic framework on crust and upper mantle structure by comparing the Mid Atlantic Ridge (MAR), the Indian Ocean Ridge (IND) and the East Pacific Rise (PAC). They differ in mean spreading rate, dynamic settings, as attached slabs, and plume interaction. Topography or bathymetry, gravity, isostasy, seismology and geology, etc. are averaged along the ridges and guide the construction of initial 2D models, including features as mean plumes, i.e. averaged along the ridge. This is a gross simplification, and the results are considered preliminary.Three model types are tested: (a) the temperature anomaly; (b) asthenospheric rise into thickening lithosphere; (c) a crustal root as had been anticipated before seafloor spreading was discovered. Additional model components are a mean plume, a non-compensated ridge uplift, an under-compensated asthenospheric rise, e.g. of partially molten material, and seismic velocity models for P and S waves. Model type (c), tends to permute to model type (b) from thick crust to thin axial lithosphere. Model type (a) renders ‘realistic’ values of the thermal expansivity, but is insufficient to fit the gravity data; partial melt may disturb the simple temperature effect. A combination of (a) and (b) is most adequate. Exclusive seismic velocity models of S or P waves do not lead to acceptable densities nor to adequate gravity fitting. The different ridges exhibit significant differences in the best models: ATL and IND show an axial mass excess fostering enhanced ridge push, and ATL, in addition, suggests a mean plume input, while PAC shows an axial mass deficit reducing ridge push, most probably due to dominance of slab pull in the force balance.Goodness of the gravity fit alone is no justifiable criterion for goodness of model, indeed minor modifications to each model within the uncertainties of the assumptions can make the fit arbitrarily good. Goodness of model is quantified exclusively by a priori information.  相似文献   

11.
The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone.Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Macquarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough. The Hjort trench region is characterized by an oblique subduction zone geoid anomaly, e.g., the Aleutian-Komandorski region. Also, limited first-motion data for the large 1924 earthquake that occurred in the northern Hjort trench suggest a thrust focal mechanism. We conclude that subduction is occurring at the Hjort trench. The existence of active subduction in this area implies that young oceanic lithosphere can subduct beneath older oceanic lithosphere.  相似文献   

12.
利用西南印度洋脊中段Indomed-Gallieni洋段49-51°E区段全覆盖高分辨率多波束水深地形资料,应用构造地貌学分析方法,结合区域地形及其他地球物理等资料,在分段分析49-51°E区段岩浆-构造动力学模式的基础上,进一步探讨了约10 Ma以来Indomed-Gallieni洋段的演化史.28、29洋段目前岩浆供应不足,在轴部不对称深断层的控制之下不对称扩张,属于超慢速扩张洋脊较常见的演化方式.轴部火山建造主要向北翼增生,发育与火山脊相关的火山地貌;南翼构造拉张作用强烈,地貌上可观察到大量断块,拆离断层可能大量存在.而27洋段水深浅、火山密集、轴部缺失裂谷,超慢速扩张下却具有较高的岩浆通量.Indomed-Gallieni洋段地形高地建造于一次岩浆增强事件,但应该不是因为Crozet热点的影响.27洋段为目前仍受该岩浆增强事件影响的唯一区段,但其强度和规模也在逐渐减小;包括28、29洋段在内的Indomed-Gallieni段其他部分,已重新恢复到岩浆供应不足的正常超慢速扩张洋脊演化模式.28、29洋段和27洋段岩浆供应均存在岩浆通量由多至少的周期,周期内岩浆供应较多时期轴部建脊,减少时期轴部火山建造裂离.但27洋段由于仍受岩浆增强事件的影响,与28、29洋段表现形式不同,主要表现为火山建造裂离方式、岩浆供应周期长短以及构造活动强烈程度的不同.  相似文献   

13.
The major tectonic elements of the Azores triple junction have been mapped using long-range side-scan sonar. The data enable the Mid-Atlantic Ridge axis to be located with a precision of a few kilometres. Major faults and other tectonic and volcanic elements of the ridge maintain their regional trend of 010° to 020° past the triple junction area. There is no oblique spreading, and only minor transform offsets of the Mid-Atlantic Ridge occur here. The main effect of the triple junction or Azores hot spot is to diminish the amplitude of the median valley to 200 m or less. There is no axial high: a topographic high seen on several profiles is located to the east of the Mid-Atlantic Ridge spreading axis and does not appear to have any fundamental significance.The third arm of the triple junction includes the Azores srreading centre which appears to have developed as a series of en echelon rifted basins (the Terceira Rift) extending from Formigas Trough at 36.8°N, 24.5°W to a point near 39.3°N, 28.8°W. There are indications that recent activity in the spreading centre may be concentrated in a series of ridges which flank the older rifted basins. Until recently the northwest end of the Terceira Rift was connected to the Mid-Atlantic Ridge axis either directly at an RRR junction, or via a transform fault. The triple junction has probably moved south during the last 6 Ma to a positin on the Mid-Atlantic Ridge near 38.7°N.Initiation of the Azores spreading centre may have occurred during the 36 Ma B.P. rearrangement of poles, with an RFF triple junction north from the East Azores fracture zone to the North Azores fracture zone and transferring a wedge of European plate to the African plate.The tectonic elements revealed by this study are in good agreement with inferred earthquake mechanisms and with the RM2 plate tectonic model of Minster and Jordan, but east-west motion between North America and Africa does not seem to be compatible with the other motions at the triple junction unless it is of very recent (2>3 Ma) origin.  相似文献   

14.
Yasuhiko  Ohara 《Island Arc》2006,15(1):119-129
Abstract In order to obtain a general view of the mantle process beneath a back‐arc basin spreading ridge, the diversity of peridotite petrology and tectonic occurrences in two back‐arc basin spreading ridges from the Philippine Sea were examined: the Parece Vela Rift and the Mariana Trough. The Parece Vela Basin spreading ridge (Parece Vela Rift) was a physically fast/intermediate‐spreading ridge, although many tectono‐magmatic features resemble those of slow‐ to ultraslow‐spreading ridges. Two unusual features of the Parece Vela Rift further demonstrate the uniqueness of the ridge: full‐axial development of oceanic core complexes and exposure of mantle peridotite at segment midpoints. The Parece Vela Rift yields a lithological assemblage of residual but still fertile lherzolite/harzburgite, plagioclase‐bearing harzburgite and dunite; similar assemblages are reported from the equatorial Mid‐Atlantic Ridge at the Romanche Fracture Zone and the ultraslow‐spreading ridges from the Indian and Arctic Oceans. The tectono‐magmatic characteristics of the Parece Vela Rift suggest that diffuse porous melt flow and pervasive melt–mantle interaction were the important mantle processes there. Globally, this ‘porous melt flow‐type’ mantle process is likely to occur beneath a segment midpoint of the ridge having a thick lithosphere, typically an ultraslow‐spreading ridge. In contrast, the Mariana Trough is a typical slow‐spreading ridge, exposing mantle peridotite at segment ends. The Mariana Trough yields a lithological assemblage of residual harzburgite and veined harzburgite, a common assemblage among the global abyssal peridotite suite. The tectono‐magmatic characteristics of the Mariana Trough suggest that channeled melt/fluid flow and limited melt–mantle interaction are the important mantle processes there, because of the colder wall‐rock peridotite in the segment end. This ‘channeled melt flow‐type’ mantle process is likely to occur in the shallow lithospheric mantle at the segment ends of any spreading ridges.  相似文献   

15.
超慢速扩张的北冰洋Gakkel洋中脊具有六个沿扩张方向的线性基底隆起(本文编号为A—F).这些线性基底隆起在中轴两侧的地球物理场和地壳结构呈现不同程度的非对称性.本文利用Gakkel洋中脊的地形、空间重力异常(FAA)和航空磁力数据,计算了它的扩张速率、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.根据中轴两侧地形和地壳厚度的对称关系,我们将六个基底隆起分为对称型和非对称型两种类型.整体上,B、D和F区基底隆起在中轴两侧的地形和地壳厚度的非对称幅值(两侧差值的绝对值)较小,其中地形的非对称幅值分别为~157m、~125m、~208m,地壳厚度的非对称幅值分别为~1km、~0.06km、~0.3km;而A、C和E区的非对称幅值较大,其中地形的非对称幅值分别为~510m、~410m、~673m,地壳厚度的非对称幅值分别为~2km、~2.5km、~1.1km.我们因此推断B、D和F区具有相对对称的地壳结构,而A、C和E区具有非对称的地壳结构.根据A、C和E区中轴两侧非均衡地形的对称关系和非对称地形的补偿状态,推测A区的非对称性可能是由岩浆分配不均所导致;而C区和E区的非对称性可能是由构造断层作用使断层下盘向上抬升变薄所导致.我们进一步推测洋中脊走向的改变可能使得构造作用更易集中于基底隆起的一侧.  相似文献   

16.
The Hollister Ridge is located on the western flank of the Pacific–Antarctic Ridge (PAR), between the Udintsev fracture zone (FZ) and the Eltanin fault system. It is a linear aseismic structure, 450 km long, oblique with respect to the PAR. Data show that the most recent activity is located in the central part of the chain, which can be considered as being still volcanically active. Both major/trace element and isotopic data suggest that some interaction occurred between the Pacific–Antarctic Ridge and the Hollister Ridge. The source of the Hollister Ridge samples has its own geochemical characteristics. The geochemical variations observed along the ridge can be explained by mixing between two major end-member components: (1) a PAR depleted source, and (2) a Hollister enriched source. A small contribution (20% maximum) of Louisville plume material is likely to exist in the middle of Hollister Ridge. These data unequivocally reject the possibility that the Hollister Ridge could be the present location of the Louisville hotspot. Ages and geochemistry data support the idea of an influence of intraplate deformation as a probable cause of the origin of the Hollister Ridge.  相似文献   

17.
We determined 2D group velocity distribution of Rayleigh waves at periods of 20-150 s in the Antarctic region using a tomographic inversion technique. The data are recorded by both permanent networks and temporary arrays. In East Antarctica the velocities are high at periods of 90-150 s, suggesting that the root of East Antarctica is very deep. The velocities in West Antarctica are low at all periods, which may be related to the volcanic activity and the West Antarctic Rift System. Low velocity anomalies appear at periods of 40-140 s along the Southeastern Indian Ridge and the western part of the Pacific Antarctic Ridge. The velocities are only slightly low around the Atlantic Indian Ridge, Southwestern Indian Ridge, and the eastern part of the Pacific Antarctic Ridge, where the spreading rates are small. Around two hotspots, the Mount Erebus and Balleny Islands, the velocity is low at periods of 50-150 s.  相似文献   

18.
If plate thickness depends on crustal age, the region of extensive partial melting below the spreading axis will be wider around fast-spreading ridges. The melt region creates a subaxial conduit channeling partial melts away from ridge-centered hot spots. The channel is here modeled by an elliptical pipe of semiminor (vertical) axis 2 × 106 cm (20 km) and semimajor (horizontal) axis KS, where S is spreading half-rate (cgs) and K is a constant of magnitude 1014 to 1015 seconds. This simple analytical model is used to explain the observation that maximum hot spot elevations on the Mid-Oceanic Ridge fall dramatically with increasing spreading rate (there are no Icelands or Afars on the East Pacific Rise!). A hot spot under a fast-spreading ridge has a broad pipe in which to discharge its partial melts; hence, only a slight topographic gradient and a low elevation is needed to discharge the mass flux rising out of the deeper mantle at the hot spot center. A second factor is that partial melts are “used up” faster in the accretion process on fast-spreading ridges. In the simple analytical model, both factors operating together explain the rapid fall of hot spot heights with increasing spreading half-rate. This result indirectly helps confirm the idea of horizontal pipe flow below the Mid-Oceanic Ridge.A theoretical topographic profile through a hot spot on the Mid-Oceanic Ridge is derived from the assumption that the pressure — i.e., topographic — gradient at a distance x from the hot spot is sufficient to supply all the accreting lithosphere downstream of x, out to xn, the limit of topographic hot spot influence. The predicted profile is quadratic in x and concave upward, and resembles several observed profiles where neighboring hot spots are not so close as to confuse the profiles. Some observed profiles are more nearly linear or even convex upward. This could be explained, for example, by downstream increases in viscosity or decreases in pipe dimensions.A hot spot on a ridge spreading at much less than 1 cm/yr half-rate would produce an enormous elevation of the ridge axis, according to our model, because the pipe would be very narrow. Such a large topographic high would create a large gravity potential which would cause the plates to move apart faster, thereby widening the pipe, and reducing the topographic high. The system of ridges and hot spots may thus be self-regulating with respect to plate speeds; this could explain why spreading half-rates on the Mid-Oceanic Ridge are in many areas as low as 1.0 cm/yr but very rarely as low as 0.5 cm/yr.  相似文献   

19.
20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构   总被引:1,自引:1,他引:0       下载免费PDF全文
超慢速扩张的Mohns洋中脊共轭两侧的地球物理场与地壳结构具有显著的非对称性.利用我国第五次北极科学考察采集的水深、重力与磁力数据,结合历史资料,我们计算了14条垂直Mohns洋中脊剖面的扩张速率、剩余水深、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.对洋中脊共轭两侧以上计算结果的进一步对比发现,Mohns洋中脊两侧整体(下文均指同一地质时刻各剖面的平均值)的非对称性呈现明显的两段性:20~10.5 Ma,相比Mohns洋中脊东侧,西侧的扩张速率更慢、地壳更厚、非均衡地形更低;10.5~0 Ma,扩张速率、地壳厚度和非均衡地形的非对称的极性与20~10.5 Ma期间完全相反.后一阶段,整体扩张速率在西侧更快、剩余水深更浅,但是对应更薄的地壳和更高的非均衡地形.我们推断前者为冰岛沿Kolbeinsey洋中脊的作用增厚了Mohns洋中脊西侧地壳并使得洋中脊向西侧跳动,而后一阶段反映了岩浆供给减少后西侧集中的构造活动导致的更多的拉伸与隆升.沿各剖面上,10.5~0 Ma期间构造活动集中的洋中脊西侧均具有薄地壳和高非均衡地形,但构造拉伸的增加并不总是对应增快的扩张速率.岩浆在浅部更多地向东侧的分配以及洋中脊向西侧的跳动可能使得东西两侧具有相近的扩张速率.  相似文献   

20.
A longitudinal seismic reflection profile of the Reykjanes Ridge, together with earthquake seismicity patterns, is interpreted in terms of the mantle plume hypothesis. Between 52°N and 57°N Reykjanes Ridge is cut by about 12 fractures whose trend, inferred from other data, is approximately east-west. North of 57° there is little or no indication of east-west fracturing.The 57°N transition from fractured to unfractured basement occurs about 900 km southwest of the postulated Iceland mantle plume. The fractured province exhibits higher seismicity and rougher basement, on transverse profiles, than does the unfractured province. A similar transition to rougher, more seismic ridge crest also occurs 900 km northeast of Iceland. We propose that flowage of hot, basalt-rich asthenosphere away from the Iceland hot spot keeps the axial lithosphere hot, thin, sparsely fractured, and relatively aseismic out to 900 km from the plume. Similar effects are evident in the vicinity of some other plumes located near spreading axes. Some plumes also exhibit a greater number of earthquakes at some distance from the spreading axis — possibly a reflection of non-axial igneous activity or fracturing due to local, plume-generated stresses.The regional basement slope along the longitudinal profile is about 8 × 10?4. If this slope represents a balance between viscous and gravity forces in the flow, a viscosity of the order 1019 poises can be estimated from the Poiseuille equation.A peculiarly flat, opaque reflector was discovered near the Reykjanes axis, about 300 km southwest of Iceland. Several hypotheses are advanced to account for such reflectors by the exceptional volcanic activity associated with high plume discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号