首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the results of the engineering geological investigations and geotechnical studies performed in the Nargesi dam site. The dam foundation located on the sedimentary rocks of Neogen period. To conduct this study, the steps including field and laboratory investigations, surface discontinuity surveying, drilled borehole data, and permeability were performed on dam foundation. Besides, the evaluation of the dam foundation was carried out by water pressure tests, which indicate the necessity of creating a grout curtain below the dam foundation. The permeability and groutability characteristics of the Nargesi dam foundation are significantly affected by geology of the site. The rock mass properties of the test section obtained from secondary permeability index (SPI) completed with the degree of jointing of the drill core acts as a useful reference for ground treatment design. Here, the performed laboratory tests were as: determination of density, moisture percent, porosity percent, water absorption, uniaxial compressive strength, Point-load strength index (Is50), p-wave velocity (Cp), s-wave velocity (Cs), deformability, and triaxial tests. The rock mass properties and classifications of the damsite is assessed using rock mass rating, the rock quality (Q), and the geological strength index classification systems. The strength and modulus elasticity of rock masses were determined through the equations proposed by different researchers. According to the findings of this work, except for some cases, there is a reasonable correlation between SPI and rock quality designation values. Based on these results, grout type and composition was suggested for the design of grout curtain.  相似文献   

2.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

3.
Since every dam site is unique and different from the rest, special geological and geotechnical investigation for each dam is a key factor in the success of the project. The Peygham-chay is a 55 m in height is an embankment dam with a clay core that is situated to the northwest of Iran and is under construction at present. The dam is founded on a valley filled by 12 m alluvium deposits that thicknesses increase toward left abutment up to 60 m. The dam site investigated based on surface discontinuity surveying, drilled boreholes logging data, in situ and laboratory tests. Detailed and extensive surface and subsurface explorations have been carried out at the dam site to characterize the geotechnical properties of foundation. The geology of the site consists of a series of cretaceous basic lavas intrusion composed with andesite, basalt and diabase that cropped out on the right abutments and is strongly fractured due to numerous joints and faults. Permeability of fissured rock mass is strongly depends on joint properties (degree of jointing, opening, continuity, filling material and weathering). In this paper in situ permeability of foundation was evaluated based on water pressure tests (lugeon) results and secondary permeability index (SPI). The impact of water pressure on joints characteristics and consequently flow rate are investigated and considered in the results. The overall groutability of rock mass was evaluated by comparison of RQD as an index of rock jointing degree and SPI values. The results indicated that permeability of rock mass in more than 66% of the tests is very low and not required for treatment. Meanwhile in the rest of sections the construction of preferred sealing system in necessary.  相似文献   

4.
特高型拱坝坝拱座岩体承受的荷载巨大,坝基岩体质量是拱座稳定的关键,在施工期如何准确评价坝基岩体质量,是拱坝建基岩体工程地质研究的重要问题。本文以工程地质条件研究为基础,从岩性、岩体结构分布着手,研究建基岩体工程地质特征;以现场、室内试验、声波测试为依据,建立坝基岩体质量评价标准。对乌东德拱坝施工期揭露的建基面岩体进行质量划分,研究发现:乌东德拱坝建基岩体质量优良,以Ⅱ级岩体占绝大多数,少量Ⅲ1级岩体,极少量Ⅲ2级岩体,与可研成果高度吻合;建基岩体满足岩体质量与声波验收要求,岩体质量空间分布较连续,且相对均匀,有利于承受拱坝推力。  相似文献   

5.
This paper highlights the geomechanical characterisation of the rock masses exposed at the dam abutments and reservoir area at the Tannur Dam site, South Jordan. The right abutment rock masses are characterised by closely to widely spaced joints. The rock-mass qualities were assigned using the rock-mass rating (RMR) and Q-tunnelling index. Both systems assigned a poor quality for foundation rocks because of the presence of weak rocks. The rock masses constituting the dam abutments exhibit fair quality. The results of packer tests indicate that the hydraulic conductivity of the rock masses of Fuheis-Hummar-Shueib (FHS) and Wadi es Sir (A7) formations range from 10 to 150 Lugeon units (LU). The FHS was characterised by lower LU values compared with A7; this reflects the fracturing characteristics of A7. However, the A7 should be grouted especially the right abutment. However, the FHS needs less grouting because the spacing between joints seems to be tight. The estimated shear strength envelopes relevant to the rock masses of both abutments as well as the foundation rocks were quite similar and, therefore, present similar shear strength characteristics. The shear strength for jointed rock masses showed curvilinear failure planes with average cohesion values of 0.67 and 0.64 MPa and friction angles of 36.5 and 35.5° for dam abutments and the foundation area, respectively.  相似文献   

6.
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined.  相似文献   

7.
某水电站坝基挠曲破碎带工程力学特性试验研究   总被引:2,自引:0,他引:2  
张玉  赵海斌  徐卫亚  顾锦健  梅松华 《岩土力学》2013,34(12):3437-3445
膝状挠曲破碎带是某水电站坝基的主要工程地质问题。破碎带岩性为完整性较差的碎裂、碎屑软弱砂岩,并呈现孔隙式胶结接触,其工程力学特性对坝基变形和稳定存在巨大影响。基于破碎带砂岩组织结构疏松、含水率较高、物理力学性能较差等特点,首先开展了基本物理特性试验分析,认为岩石微细观结构复杂、渗透特性较好,属小孔隙率砂岩。其次,开展了室内常规和现场力学特性试验研究;最后,在宏观力学参数确定的基础上,探讨了破碎带对工程作用的响应及影响。结果表明,破碎带岩石内部结构破坏严重,矿物成分主要为石英、长石、绢云母等,化学成分以SiO2为主,但化学侵蚀并不显著。常规剪切曲线呈现出明显的4阶段特征,三轴压缩试验破坏机制为塑性剪切破坏,表现出强度低、延性扩容明显、出现屈服平台等特征,且碎裂岩强度略高于碎屑岩;现场试验表明岩体变形均匀,变形模量较低,处于60~630 MPa;地基承载力处于0.8~2.3 MPa。研究成果对该水电站坝基工程有重要的参考价值。  相似文献   

8.
9.
Salman Farsi is an arch-gravity dam. It is 125 m high and located on the Ghareh-Agaj River in Fars province, south of Iran. From the geological and hydrogeological point of view, this dam is one of the most complicated sites in Iran. Existence of 40 springs at the river level (including hot springs), and many faults and crushed zones are part of these complications. The dam site is famous for its numerous big caverns. Main characteristics of the rock mass are: (1) low permeable limestone of moderate to high strength, (2) high karstification generally localized around intersection of faults or discontinuities. The main purpose of grout curtains is to change the hydrogeological characteristics (reducing the permeability) of the rock mass. Constructing a grout curtain in a karstic environment with a high random distribution of karst features contains some uncertainties and surprises cannot be excluded. During the excavation of grouting galleries, some big caverns at both abutments were discovered. The volume of the biggest one (Golshan’s Cave) exceeds 150,000 m3. A large-scale underground geotechnical treatment is needed to improve the water tightness of the dam site.  相似文献   

10.
Rock mass characterization of Utari dam in Lalitpur district of Uttar Pradesh was done to identify different stability classes of rock mass. For better stability of Utari dam, foundation conditions were carefully studied by detailed field investigations of the site supplemented by laboratory tests. During feasibility and preliminary stages, rock mass characterization of slopes was conducted to identify the vulnerable zones of failure. Rock mass characterization was done by compilation of information obtained from intact rock as well as from rock mass to determine its grade and long term slope stability of the site. On the basis of Rock Mass Rating (RMR) and Geological Strength Index (GSI) slope stability is identified which lies under good quality rock mass. Kinematic analysis was conducted to find out the probability for different types of structurally controlled slope failure. Microscopic analyses were conducted to identify the degree of chemical alteration of feldspar. Clay formation by sericitization along joint planes is harmful for the stability of dam structure. Remedial measures must be taken to reduce the extent of chemical alteration. Granitoids at dam site forms a compact and stable foundation consisting of four sets of joints in which two sets were prominent which are dipping on the upstream side of the dam which reveals good condition on the dam site as leakage from reservoir will be minimum and least up-thrust on the dam structure.  相似文献   

11.
查明坝基岩体的渗透结构对于大坝工程防渗方案的制定具有重要意义。以黄河古贤水利枢纽工程近水平分布的红层坝基岩体为研究对象,使用“连续、高分辨率”压水试验数据处理与统计方法,分析了岩体透水率与高程、岩性及顺层剪切带的关系,阐明了坝基岩体的渗透结构,提出了工程防渗建议。研究发现,坝基岩体渗透结构表现出结构性和随机性双重特征。结构性表现为岩体透水率随高程的降低而减小;随机性表现为岩体透水率会因岩性和剪切构造等随机变化。对于河床及滩地坝基岩体,风化卸荷带底高程在450 m附近,1 Lu关键透水率指标界线的底高程位于340 m附近。对于岸坡坝基岩体,3 Lu关键透水率指标界线的底高程位于560~580 m。在坝基勘察深度范围内,350~360 m高程段连续分布具有一定厚度的软岩类岩体,剪切构造不发育且岩体透水微弱,可视为相对隔水层,对坝基防渗帷幕优化设计具有指示意义。文章提出的统计、分析方法具有一定普适性,可为类似工程所借鉴。  相似文献   

12.
This paper presents the engineering geological properties and support design of a planned diversion tunnel at the Boztepe dam site that contains units of basalt and tuffites. Empirical, theoretical and numerical approaches were used and compared in this study focusing on tunnel design safety. Rock masses at the site were characterized using three empirical methods, namely rock mass rating (RMR), rock mass quality (Q) and geological strength index (GSI). The RMR, Q and GSI ratings were determined by using field data and the mechanical properties of intact rock samples were evaluated in the laboratory. Support requirements were proposed accordingly in terms of different rock mass classification systems. The convergence–confinement method was used as the theoretical approach. Support systems were also analyzed using a commercial software based on the finite element method (FEM). The parameters calculated by empirical methods were used as input parameters for the FEM analysis. The results from the two methods were compared with each other. This comparison suggests that a more reliable and safe design could be achieved by using a combination of empirical, analytical and numerical approaches.  相似文献   

13.
The 200m long and 106.2m wide spillway of Bunakha Hydroelectric Project is proposed at the centre of the dam to pass the flood discharge. The spillway area was investigated through detailed engineering geological mapping, geophysical survey, exploratory drilling and laboratory testing. The rock mass properties, i.e. joint sets, weathering grade, RQD, RMR, permeability, P-wave velocity etc. of the rock masses to be encountered during the excavation of spillway have been analyzed in detail. Core samples from the exploratory drill hole drilled at the spillway alignment were tested for physico-mechanical properties of rocks in the laboratory. The mapping details indicated that the major rock types which are exposed to the surface and cover the entire spillway area are foliated gneisses with bands of banded gneisses. On the basis of detailed investigations and laboratory testing, inferences and recommendations have been made which will be helpful during the construction of the project.  相似文献   

14.
付贵 《地下水》2011,(4):85-86,140
裂隙岩体的渗透性是地质灾害、水电工程、矿山工程等研究中需要考虑的重要因素之一。岩体裂隙本身的渗透性取决于它的空间几何参数,因此,可以通过直接测量裂隙的几何要素计算出岩体的渗透系数。岩体的结构及其透水性直接关系到建筑物围岩的稳定及安全.通过水力劈裂试验,可以真实地反映高水压作用下岩体的结构和渗透性的变化规律.以某水电站工...  相似文献   

15.
岩体与岩石的力学强度之间既有内在联系又存在明显的差异,场地岩石力学指标对于评价场地岩体的力学特性至关重要。以三门核电场地为研究对象,在室内岩石力学试验的基础上,结合野外地质调查,综合考虑岩体结构特征和应力分布状态等因素的影响,引入定量描述岩体结构特征和风化程度的地质强度指标(GSI),采用Hoek Brown强度准则估计岩体力学参数,同时与岩体地质力学分类法(RMR)计算得到的岩体力学参数进行对比分析。基于GSI的Hoek-Brown法得到的中等风化凝灰质砂岩、微风化凝灰质砂岩和微风化安山玄武岩岩体的c值分别为4.03、6.20、6.10 MPa,φ值分别为31.96°、34.37°和33.87°。基于RMR评分的Hoek-Brown法得到的c值分别为4.42、6.44、7.24 MPa,φ值分别为28.92°、32.43°和34.51°。研究结果表明,采用Hoek-Brown准则确定的核电场地岩体力学强度指标比较合理,得到的岩体力学指标可以作为核电站基础设计的重要依据。  相似文献   

16.
划分岩体渗透结构类型是水利水电工程地质勘察和渗透性评价的重要内容。从岩体结构的控渗作用出发,分析了控制岩体渗透特征的主要因素,即岩性、断裂构造、风化卸荷作用及岩溶作用;提出了岩体渗透结构类型的划分原则,即考虑岩体的各向异性特征。根据岩体的宏观渗透特征,即渗透介质及主要途径,将岩体渗透结构类型划分为5类:散体状渗透结构、层状渗透结构、带状渗透结构、网络状渗透结构、管道状渗透结构。结合工程实例,给出了小浪底渗透结构为层状及带状、三峡工程坝址区岩体渗透结构为散体状、网格状及带状。  相似文献   

17.
对于高放废物地质处置工程,地质屏障系统是放射性有害物质进入环境的最后一道屏障,也是一条重要防线。黏土岩由于其低渗透性、渗透损伤自修复以及较强的吸附能力等特性,被认为是一种合理的高放废物处置地质屏障。结合比利时正开展的黏土岩高放废物地质处置相关研究课题,通过一系列室内试验研究黏土岩的水力耦合机制及长期蠕变特性。三轴压缩试验表明,黏土岩压缩强度、超孔隙水压力与围压正相关。渗透试验表明,黏土岩渗透性呈现显著的各向异性特征,围压增大使黏土岩渗透性显著降低。蠕变试验表明,黏土岩蠕变变形、蠕变变形速率与载荷密切相关,即:载荷越大,黏土岩蠕变变形越显著,蠕变变形速率达到稳定所需的时间越长,且相应的稳态蠕变速率越大;根据应力阈值和等时曲线法初步确定该黏土岩长期强度在1.0~1.2 MPa。研究结果将为我国未来黏土岩高放废物处置库的选址和安全性评估提供重要科学依据。  相似文献   

18.
水劈裂过程中岩体渗透性规律及机理分析   总被引:7,自引:0,他引:7  
唐红侠  周志芳  王文远 《岩土力学》2004,25(8):1320-1322
岩体的结构及其透水性直接关系到建筑物围岩的稳定及安全。通过水力劈裂试验,可以真实地反映高水压作用下岩体的结构和渗透性的变化规律。以某水电站工程坝址区岩体所作的水力劈裂试验资料为基础,分析了在水力劈裂过程中,岩体的结构和渗透性发生的变化及其规律以及在该过程中岩体裂隙形成的机理。  相似文献   

19.
赵立敏 《中国煤田地质》2007,19(2):44-46,69
在调查高腊梅水库大坝所处地形地貌、地层岩性、地质构造与地震及水文地质等地质环境条件的基础上,研究了坝体、坝基及坝肩的工程地质特征,对坝体的稳定性、填筑土的渗漏,坝基及坝肩岩(土)体的渗透等问题进行了评价.对可能产生的工程地质危害及应采取的加固处理措施等提出了有针对性的建议.  相似文献   

20.
Havasan dam site is located in northwest of Iran. The planned concrete dam is to be built on Cretaceous limestone. Faulted and fractured limestone is exposed at the dam abutments and in the reservoir area. Rock mass properties including the deformation modulus and uniaxial compressive strength were calculated using different rock mass classification systems (RMR, Q, GSI and DMR). Laboratory tests indicate that joint filling materials contain clay with low to high plasticity (CL to CH) and low to medium potential swelling pressures. X-ray diffraction analysis confirms that the reason for potential swelling of joint fillings is the existence of clay minerals (such as illite and montmorillonite). The study results about the shear strength of clay-filled joints show that under JRC–JCS condition (laboratory scale), JRC n –JCS n (large scale) and normal stress equal to 0.25–4 MPa, the range of shear strength of clay-filled joints will be equal to 0.2–2.17 and 0.14–1.72 MPa. In some areas dissolution along the joints results in high permeability, especially in the right abutment. Three dominant joint sets occur in the exploration galleries which have been excavated in the right abutment. The maximum aperture of these joints varies from 7 to 9 cm, and the joints are typically filled with clay. Preliminary analysis shows that the presence of open joints which will cause seepage of water, combined with the impact of the clay-filled joints and forces acting on the slopes, could lead to slope failures and rock falls. In addition, the assessment of slope stability results in abutments using limited equilibrium method and Swedge software under dynamic and static conditions shows that two wedges formed on the slopes of the abutment by the natural joints are potentially unstable. The rock wedge on the left abutment is smaller but presents higher sliding potential. In addition, there is no probability of planar failure due to the geological condition of the dam abutments. This paper summarizes the site investigation and subsequent analysis, which resulted in a recommendation not to construct this site. We offer some potential mitigation plans to consider if a dam were to be built at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号