首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The seaward end of modern rivers is characterized by the interactions of marine and fluvial processes, a tract known as the fluvial to marine transition zone, which varies between systems due to the relative strength of these processes. To understand how fluvial and tidal process interactions and the fluvial to marine transition zone are preserved in the rock record, large‐scale outcrops of deltaic deposits of the Middle Jurassic Lajas Formation (Neuquén Basin, Argentina) have been investigated. Fluvial–tidal indicators consist of cyclically distributed carbonaceous drapes in unidirectional, seaward‐oriented cross‐stratifications, which are interpreted as the result of tidal modulation of the fluvial current in the inner part of the fluvial to marine transition zone. Heterolithic deposits with decimetre‐scale interbedding of coarser‐grained and finer‐grained facies with mixed fluvial and tidal affinities are interpreted to indicate fluvial discharge fluctuations (seasonality) and subordinate tidal influence. Many other potential tidal indicators are argued to be the result of fluvial–tidal interactions with overall fluvial dominance or of purely fluvial processes. No purely tidal or tide‐dominated facies were recognized in the studied deposits. Moreover, fluvial–tidal features are found mainly in deposits interpreted as interflood (forming during low river stage) in distal (delta front) or off‐axis (interdistributary) parts of the system. Along major channel axes, the interpreted fluvial to marine transition zone is mainly represented by the fluvial‐dominated section, whereas little or no tide‐dominated section is identified. The system is interpreted to have been hyposynchronous with a poorly developed turbidity maximum. These conditions and the architectural elements described, including major and minor distributary channels, terminal distributary channels, mouth bars and crevasse mouth bars, are consistent with an interpretation of a fluvial‐dominated, tide‐influenced delta system and with an estimated short backwater length and inferred microtidal conditions. The improved identification of process interactions, and their preservation in ancient fluvial to marine transition zones, is fundamental to refining interpretations of ancient deltaic successions.  相似文献   

2.
Latest Neoproterozoic to earliest Cambrian strata in north-western Canada provide an example of a pre-vegetation braid-delta depositional system. Depositional environments represented in the succession include braided fluvial and braid-delta distributary channels, aeolian dune fields and interdistributary lagoons/bays, as well as mouth bar, beach to shoreface, and prodelta to distal shelf settings. Three formations have been investigated: the Ingta Formation formed in wave-dominated nearshore to offshore shelf environments with little or no apparent deltaic influence, whereas the overlying Backbone Ranges and Vampire formations contain an extensive record of braid-delta deposits ranging from braidplain to distal prodelta facies. On the braid-plain, river channels reached widths of up to several kilometres. Such channels terminated seaward in braid deltas that showed some shoreline protuberance and were characterized by fluvial-dominated mouth-bar deposition with lesser wave influence; wave-dominated deltaic successions are rare in the succession. Interdeltaic areas were characterized by wave-dominated prograding shorelines. Interdistributary lagoons probably formed primarily in abandoned distributary channels. Delta-front/prodelta deposits are silt-rich and contain abundant soft-sediment deformation, including slumps. The deposits in these formations illustrate the significantly different nature of sedimentation prior to the advent of land plants. This is illustrated in the dominance of braided fluvial deposition and of silt-rich offshore facies that may have resulted from enhanced aeolian transport of loess. The non-actualistic effects of limited bioturbation and extensive microbial binding apparently exerted relatively little control on the distribution of facies. However, the absence of extensive bioturbation is manifest in pristine preservation of primary sedimentary structures, while the hypothesized latest Proterozoic-earliest Cambrian decline in microbial binding may be reflected in the upward increase in the abundance of sole marks in the succession.  相似文献   

3.
The fluvial–tidal transition (FTT) is a complex depositional zone, where fluvial flow is modified by tides as rivers approach a receiving marine basin. Variations in the relative importance of tidal versus fluvial processes lead to a distinctive distribution of sediments that accumulate on channel bars. The FTT generally consists of three broad zones: (1) a freshwater-tidal zone; (2) a tidally influenced freshwater to brackish-water transition; and (3) a zone of relatively sustained brackish-water conditions with stronger tides. A very common type of deposit through the fluvial–tidal transition, especially on the margins of migrating channels, is inclined heterolithic stratification (IHS). At present, a detailed account of changes in the character of IHS across the FTT of a paleo-channel system has not been reported, although a number of modern examples have been documented. To fill this gap, we quantitatively assess the sedimentology and ichnology of IHS from seven cored intervals in three geographic areas situated within the youngest paleovalley (“A” Valley) in the Lower Cretaceous McMurray Formation of Alberta, Canada. We compare the data to trends defined along the FTT in the present-day Fraser River in British Columbia, Canada to interpret paleo-depositional position in the ancient fluvial–tidal channels.Analysis determined that the mean mudstone thickness is 8.2 cm in the southern study area (SA). Mean thickness increases to 11 cm in the central study area (CA), and decreases again to 4.4 cm in the northern study area (NA). The proportion of mudstone is 31% in SA, 44% in CA, and 27% in NA. Thickness-weighted mean bioturbation intensity in sands varied from 0.29 in SA and CA, to 0.28 in NA. On the other hand, thickness-weighted mean bioturbation intensity (BI) in mudstone increases from 1.46 in SA, to 1.77 in CA, and is 1.94 in NA. The ichnological diversity also increased from south to north.Sedimentological results show similar trends to those of the Fraser River, enabling the identification of a freshwater to brackish-water transition zone with tidal influence. The interpreted position of the transition is underpinned by the bioturbation intensity and trace-fossil diversity trends, indicating periodic brackish-water conditions throughout SA in the McMurray Formation during low river flow conditions. Together, these data suggest that a broad FTT existed in the “A” Valley, with fluvial-dominated channels to the south that experienced seasonal brackish-water inundation during base flow, and channels experiencing increasing brackish-water influence lying further north towards a turbidity maximum zone. The FTT zone appears to have extended for several hundred kilometers from south to north.Based on the sedimentological and ichnological data, as well as estimations of lateral accretion rates, we refute the commonly applied Mississippi River depositional analogue for McMurray Formation channels. Rather, we show that while not a perfect fit, the tidally influenced Fraser River shows much greater agreement with the depositional character recorded in McMurray Formation IHS. Future work on the McMurray system should focus on characterizing tide-dominated deltaic and estuarine systems, such as the Ganges-Brahmaputra, and on forward-modeling the evolution of tide-dominated and tide-influenced river systems.  相似文献   

4.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

5.
Depositional facies have been hypothesized to be linked to sequence stratigraphic positions. Also, shoreline systems are built by mixed processes, including rivers, storms, fair-weather waves and tides. Resolving the complexity of shoreline deposition requires detailed quantitative facies analysis with particular attention to heterolithic successions. In this study, 71 sections in a 130 km long outcrop belt of the Cretaceous Gallup Formation in the north-west of the San Juan Basin were measured. Five major facies associations were identified using sedimentological and iconological interpretations, including offshore shelf, non-deltaic shoreline sandstones, deltas, coastal bayline and fluvial. Each facies association also comprises subordinate facies. Depositional facies interpretations are placed in a high-resolution sequence stratigraphic framework that allows for reconstructions of the palaeogeography of individual parasequence sets that demonstrate temporal and spatial evolution of facies associations and depositional processes. The results show that the Gallup is a mixed-process-controlled depositional system with fair-weather and storm-wave dominance, river influence and tide-effect, contrasting with previous interpretations of a solely fair-weather wave-dominated environment. Depositional processes and the resultant facies change with sequence stratigraphic positions in response to relative sea-level changes – particular facies are only deposited in certain systems tracts. Distinction and transition between non-deltaic shorefaces and wave-dominated deltas have also been documented in this study. Non-deltaic shorefaces are characterized by homogeneous sandstones with a wide-range bioturbation index and the absence of mudstones. Wave-dominated deltas are subject to river influence and contain prodelta facies. This study shows the importance of detailed facies analysis with high-resolution sequence stratigraphic control using outcrops for documenting sedimentary processes of shallow marine shoreline systems.  相似文献   

6.
The Queen City Formation (Eocene) displays an array of tide-dominated coastal facies in the Tyler Basin of the northern Gulf of Mexico. This facies assemblage, which is atypical of the microtidal, wave-dominated, coastal depositional complexes that characterize the Cenozoic Gulf basin, reflects tidal amplification in a generally protected embayment on the east flank of a strongly prograded delta system. The shallow embayment was confined to the east by contemporaneous uplift and shoaling across the Sabine Uplift. Fluvial, barrier (including ebb tidal delta), heterolithic tidal, estuary-fill, and tidal point-bar facies are all found at outcrop. These facies were projected into the three-dimensional geometry of the tide-dominated depositional complex. Inlet, estuary, and distributary-fill sand bodies, which are linear and diporientated, dominate lithofacies maps. The Queen City facies assemblage in the Tyler Basin records a mixture of mesotidal to macrotidal environments that were interspersed in time and space with fluvial-dominated lobes, which periodically prograded eastward from the deltaic depocentre into the flanking embayment. Queen City deposition terminated with regional marine flooding and deposition of glauconitic, fossiliferous shelf sands and muds of the Weches Formation. Transgression is marked by a prominent ravinement surface that truncates underlying facies of the tide-dominated shore zone.  相似文献   

7.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

8.
The area of coastal rivers with a combination of fluvial, tidal and wave processes is defined as the fluvial to marine transition zone and can extend up to several hundreds of kilometres upstream of the river mouth. The aim of this study is to improve the understanding of sediment distribution and depositional processes along the fluvial to marine transition zone using a comprehensive dataset of channel bed sediment samples collected from the Mekong River delta. Six sediment types were identified and were interpreted to reflect the combined action of fluvial and marine processes. Based on sediment‐type associations, the Mekong fluvial to marine transition zone could be subdivided into an upstream tract and a downstream tract; the boundary between these two tracts is identified 80 to 100 km upstream of the river mouth. The upstream tract is characterized by gravelly sand and sand and occasional heterolithic rhythmites, suggesting bed‐load supply and deposition mainly controlled by fluvial processes with subordinate tidal influence. The downstream tract is characterized by heterolithic rhythmites with subordinate sand and mud, suggesting suspended‐load supply and deposition mainly controlled by tidal processes with subordinate fluvial influence. Sediment distributions during wet and dry seasons suggest significant seasonal changes in sediment dynamic and depositional processes along the fluvial to marine transition zone. The upstream tract shows strong fluvial depositional processes with subordinate tidal influence during the wet season and no deposition with weak fluvial and tidal processes during the dry season. The downstream tract shows strong coexisting fluvial and tidal depositional processes during the wet season and strong tidal depositional processes with negligible fluvial influence during the dry season. Turbidity maxima are present along the downstream tract of the fluvial to marine transition zone during both wet and dry seasons and are driven by a combination of fluvial, tidal and wave processes.  相似文献   

9.
在我国古代的松辽盆地和现代的鄱阳湖等大型坳陷湖盆内发现的浅水湖盆河控三角洲的骨架砂体类型、垂向沉积层序及相带分异等方面与正常三角洲存在很大的差异, 需要进一步深入研究。利用野外露头、现代沉积和地下岩芯、测井、地震等资料精细解剖及分析表明, 浅水湖盆河控三角洲前缘发育大量、密集、窄的水下分流河道砂体, 砂体连续且水下延伸较远, 直至消失变成薄的水下薄层砂(河口坝或席状砂)。每支水下分流河道构成了由中心向两侧及前方:水下分流河道→薄层砂核部→薄层砂边缘→水下分流间湾的平面微(能量)相序列, 形成三角洲前缘“河控带状体”。浅水湖盆河控三角洲前缘不同的相位空间位置具有不同的沉积模式, 由岸向湖依次发育高低水位间过渡带“近岸沉积”模式、近岸浅水带“河控带状体”模式、中岸中等水深带“水下分流河道末端河控薄层砂”模式和远岸深水带“浪控席状砂”模式。  相似文献   

10.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

11.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

12.
The Upper Permian Bijori Formation of the Satpura Gondwana basin comprising fineto coarse-grained sandstone, carbonaceous shale/mudstone and thin coal bands was previously interpreted as the deposits of meandering rivers. The present study documents abundance of wave ripples, hummocky and swaley cross-stratification and combined flow bedforms in the Bijori Formation, suggesting that a significant part of the formation was deposited in a wave-agitated environment. Evidence of near-emergent depositional conditions provided by repeated occurrence of rootlet beds and hydromorphic paleosols, local flooding surfaces denoting rapid fluctuation of water level, occurrences of temnospondyl vertebrate fossils, and absence of tidal signatures and marine fossils suggest a lacustrine rather than marine depositional regime. Five facies associations recognised within the Bijori Formation are inferred to represent fluvial channels and associated floodplains (FA1), lake shorelines (FA2), subaqueous distributary channels and associated levees (FA3), waveand storm-affected delta front (FA4), and open lacustrine/lower shoreface (FA5) deposits. The planoconcave fluvial channel-fill sandbodies with unidirectional cross-beds are clearly distinguishable from the delta front bars that show a convexo-plan or bi-convex sandbody geometry and dominance of wave and combined flow bedforms. Some of the distributary channels record interaction of fluvial and wave-dominated basinal processes. Major distributary sandbodies show a north to northwest flow direction while wave-affected delta front sandbodies show very complex flow patterns reflecting interaction between fluvial discharge and wave processes. Wave ripple crest trends show that the lake shoreline had an overall east-northeast to west-southwest orientation. The lack of documented contemporaneous lacustrine or marine sediments in the Satpura Gondwana basin posed a major problem of basin-scale palaeogeographic reconstruction. The existence of Bijori lake solves the problem and the lake is inferred to have acted as repository for the contemporaneous alluvial drainage. Development of the large Bijori lake body implies generation of accommodation space exceeding the rate of sediment supplied and thus represents locus of high tectonic subsidence. Transition of fluvial sediments with red mudstone and calcareous soil profile in the lower part of the succession to carbonaceous shale and coal-bearing lacustrine sediments in the upper part, denote a change from a warm semi-arid climate with seasonal rainfall to a more humid one.  相似文献   

13.
Analysis of Neogene cores from the Eastern Venezuela Basin along 65 km of a west–east trending shoreline allows characterization of the sedimentological and ichnological signatures of wave, river and tidal processes. The area displays deltas prograding northward from the Guyana Shield. Twenty‐three facies are defined and grouped into four categories (wave‐influenced, river‐influenced, tide‐influenced and basinal). Wave‐dominated deltaic deposits occur mostly in the Tácata Field. The delta plain was characterized by tide‐influenced distributary channels separated by interdistributary bays. Fluvial discharge in the delta front and prodelta was repeatedly interrupted by storm‐wave reworking and suspended sediment fallout. Delta‐front and prodelta deposits contain some ichnotaxa that typically do not occur in brackish water (for example, Chondrites and Phycosiphon). Amalgamated storm deposits are unburrowed or contain vertical Ophiomorpha. Lateral (especially on the updrift side) to the river mouths, waves caused nearly continuous accretion of the associated strandplains. These deposits are the most intensely bioturbated, and are dominated by the estenohaline echinoid‐generated ichnogenus Scolicia. River‐dominated deltaic deposits are present in the Santa Bárbara, Mulata, Carito and El Furrial Fields. Low‐sinuosity rivers characterized the alluvial plain, whereas the subaerial delta plain was occupied by higher‐sinuosity rivers. The subaqueous delta plain includes distributary channels and tide‐influenced interdistributary bays. Further seaward, successions are characterized by terminal distributary‐channel and distributary mouth‐bar deposits, as well as by delta‐front and prodelta deposits showing evidence of sediment gravity‐flow and fluid‐mud emplacement. Delta‐front and prodelta deposits are unbioturbated to sparsely bioturbated, suggesting extreme stress, mostly as a result of high fluvial discharge and generation of sediment gravity flows. Tidal influence is restricted to interdistributary bays, lagoons and some distributary channels. From an ichnological perspective, and in order of decreasing stress levels, four main depositional settings are identified: river‐dominated deltas, tide‐influenced delta plains, wave‐dominated deltas and wave‐dominated strandplain–offshore complexes.  相似文献   

14.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

15.
Sandyhaven Pill is a ‘drowned valley’ type of estuary. Thus the deposits differ from most other described estuarine deposits which are of ‘tidally influenced river’ type. The surface sediments may be divided broadly into wave-dominated deposits (22% of area), tide-dominated deposits (65%), deposits related to marginal cliff collapse (12%) and river-dominated deposits (1%). Further subdivision shows that the subenvironments are nested in a progression up the estuary with trends to finer sediment size, reduced sorting and increased biogenic activity. The latter relates to a marine to estuarine faunal change and a strong relationship between the distributions of biota and depositional subenvironments. Over a 29 day period, reduction in wave height was reflected in wave-dominated areas by shoreward movement of some subenvironment boundaries and by improved definition of symmetrical ripples. The tidal cycle had only a limited effect on the tide-dominated sediments. The most reliable indicators of estuary trend are channels and asymmetrical ripples; but coring shows that ripples and other minor structures are rarely preserved. Heavy mineral analysis indicates that most of the estuarine sand came from offshore. Gradual sediment build-up will result in a regressive sequence. If this were preserved under a later transgression, the resultant deposit would be an elongate sediment body bounded laterally by a coarse marginal facies. The sediment sequence would be inward and upward fining with diachronous facies boundaries sloping upwards towards the offshore end and towards the axis of the body.  相似文献   

16.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

17.
Detailed models already exist that outline physical and temporal relationships in marine and marginal marine strata. Such models are still in their infancy in alluvial deposits. Recognition of tidal and estuarine influence in fluvial strata is critical to the development of high resolution sequence stratigraphic correlations between marine and non-marine strata. Strata that have previously been interpreted as low energy meandering river deposits contain sedimentary and biogenic structures that suggest a tidal influence. These structures include sigmoidal bedding, paired mud/silt drapes, wavy and lenticular bedding, shrinkage cracks, multiple reactivation surfaces, inclined heterolithic strata, complex compound cross-beds, bidirectional cross-beds, and trace fossils including Teredolites, Arenicolites and Skolithos. Although none of these structures is unique to tidal processes, the preponderance of data suggests that fluvial systems have been affected by tidal processes well inland of coeval shoreline deposits. These deposits rarely form a significant proportion of a depositional sequence; however, their occurrence allows time significant surfaces to be extended for tens or even hundreds of kilometres inland from coeval shoreline deposits. In Turonian through Campanian strata exposed in the Kaiparowits Plateau of southern Utah, tidally influenced facies are recognized within at least two distinct stratigraphic levels that were deposited during periods of relatively rapid base level rise. These strata form part of an alluvial transgressive systems tract. Landward of each of the marine transgressive maxima, tidal facies are present in fluvial channels that are completely encased in non-marine strata at distances up to 65 km inland from a coeval palaeoshoreline. Our work suggests that such deposits may have gone unrecognized in the past, but they form a significant component of alluvial strata in many depositional sequences. Although these tidally influenced fluvial deposits may be difficult to recognize, they are temporally equivalent to marine maximum flooding surfaces and provide a chronostratigraphic correlation between alluvial and nearshore marine deposits.  相似文献   

18.
层间氧化带精细结构的量化表征对揭示砂岩型铀成矿规律至关重要.利用系列沉积学和地球化学编图对松辽盆地钱家店铀矿床层间氧化带结构进行了量化表征,发现该矿床层间氧化带主要由红色砂岩、浅黄色砂岩、灰白色砂岩、灰色含矿砂岩和原生灰色砂岩构成,分别对应于强氧化亚带、弱氧化亚带、微弱氧化亚带、过渡带和还原带.铀矿化与层间氧化带内部结构关系密切:工业铀矿体主要发育在过渡带,微弱氧化亚带矿体连续性相对较差,弱氧化亚带发育零星铀矿化,还原带靠近过渡带一侧发育低品位的零星铀矿化.铀储层内部结构和沉积相对层间氧化带发育具有重要制约作用:辫状河砂体及辫状分流河道砂体是氧化带发育区域;辫状分流河道边部及分流间湾中决口扇砂体是过渡带发育区域.   相似文献   

19.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号