首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
《Sedimentology》2018,65(4):1246-1276
Submarine mass‐transport deposits represent important stratigraphic heterogeneities within slope and basinal sedimentary successions. A poor understanding of how their distribution and internal architecture affect the fluid flow migration pathway may lead to unexpected compartmentalization issues in reservoir analysis. Studies of modern carbonate mass‐transport deposits mainly focus on large seismic‐scale slope failures; however, the near‐platform basinal depositional environment often hosts mass‐transport deposits of various dimensions. The small‐scale and meso‐scale (metres to several tens of metres) carbonate mass‐transport deposits play a considerable role in distribution of sediment and therefore have an impact on the heterogeneity of the succession. In order to further constrain the geometry and internal architecture of mass‐transport deposits developed in near‐slope basinal carbonates, a structural and sedimentological analysis of sub‐seismic‐scale mass‐transport deposits has been undertaken on the eastern margin of the Apulian carbonate platform in the Gargano Promontory, south‐east Italy. These mass‐transport deposits, that locally comprise a large proportion (50 to 60%) of the base of slope to basinal sediments of the Cretaceous Maiolica Formation, typically display a vertically bipartite character, including debrites and slump deposits of varying volume ratios. A range of brittle and ductile deformation styles developed within distinct bed packages, together with the presence of both chert clasts, folded chert layers and spherical chert nodules, suggest that sediments were at different stages of lithification prior to downslope movement associated with mass‐transport deposits. This study helps elucidate the emplacement processes, frequency and character of subseismic‐scale mass‐transport deposits within the basinal carbonate environment, and thereby reduces the uncertainties in the characterization of subsurface carbonate geofluid reservoirs.  相似文献   

2.
新疆库车坳陷中、新生界碳酸盐岩及其成因意义?   总被引:8,自引:2,他引:8       下载免费PDF全文
新疆库车坳陷古近系库姆格列木群为与广海连通不畅的半封闭局限海湾-蒸发潟湖环境沉积,它应是新特提斯洋向北的延伸部分,其中的碳酸盐岩主要为海相蒸发潮坪环境的潮上带膏云坪,潮间带生屑滩、砂屑滩、鲕滩和潮下带泥晶灰岩、泥岩、泥晶云岩等。白垩系巴什基奇克组底部的灰黑色泥灰岩为深湖环境的沉积,分布较局限,仅见于克拉201井;白垩系巴什基奇克组中部的浅灰色透镜状泥灰岩结核是典型干旱陆上暴露环境的产物,仅在库车河剖面见零星分布。侏罗系湖相碳酸盐岩主要分布在恰克马克组,其次是阳霞组和克孜勒努尔组,在卡普沙良河剖面的恰克马克组上部,可见到大量的叠层石灰岩,它们主要形成于能量较强的浅湖环境;深灰色泥晶灰岩常与灰黑色泥岩伴生,是深湖-半深湖环境产物。以上这些不同时期不同沉积环境的碳酸盐岩具有不同规律的微量元素和碳、氧同位素特征,它们对于研究库车坳陷的沉积环境变迁和盆地演化具有重要意义。个别样品地球化学数据的偏差不能代表对整体沉积环境的判别,所以碳酸盐岩沉积环境的判别需要结合共生岩石沉积构造、沉积组合序列、古生物和沉积地球化学等资料进行综合分析。  相似文献   

3.
《Geodinamica Acta》2013,26(1-3):41-48
Clastic karst deposits occur at different positions within karst areas, whereas surface karst deposits, sediments of the crack filling facies, the cave entrance facies and the inner cave facies have to be distinguished. The karstification itself is of minor importance for the formation of clastic deposits. Except for incasional debris and impure limestones or marls the contribution of carbonate rocks to clastic karst deposits is low. The majority of clastic material is allogenic and siliciclastic.

Regarding the depositional processes cave sediments can be divided into fluvial cave deposits, gravitative or percolative deposits, decomposition deposits and rock breakdown. An actualistic approach could be a useful tool for the identification of fluvial cave deposits. By means of the depositional features of recent cave sediments and classical sedimentological features cave deposits of unknown origin can be classified.  相似文献   

4.
The Eocene Nummulitic Limestone of the Dauphinois domain in the Argentina Valley (Maritime Alps, Liguria, Italy) is characterized by the local presence of carbonate ramp facies rich in acervulinid macroids, rhodoliths and larger foraminifera. The development of these particular facies is mainly controlled by palaeomorphology of the substratum, tectonics, type and amount of terrigenous supply and global sea level changes.
The Upper Cretaceous to Eocene succession outcropping in the Argentina Valley shows differences in facies and age if compared to the typical succession of the Maritime Alps:
  • the Cretaceous substratum is younger (early Maastrichtian) and is followed by an unconformity that is interpreted as a submarine discontinuity surface;
  • the first Eocene carbonate deposits are older (late Lutetian);
  • the Nummulitic Limestone is characterized by the development of carbonate facies deposited in a deep infralittoral-circalittoral setting of a carbonate ramp, sheltered from terrigenous input; in these facies encrusting foraminifera (Solenomeris) replace calcareous red algae in nodules similar to rhodoliths (acervulinid macroids);
  • the Nummulitic Limestone is thicker than usual, reaching 110–160 m of thickness.
The Eocene tectonostratigraphic evolution can be summarized as follow: (1) synsedimentary tectonic activity that causes the development of a carbonate ramp with an adjacent structural trough where ramp-derived bioclastic material is deposited (late Lutetian); (2) interruption of the tectonic activity and uniform deposition of deep circalittoral sediments, characterized by deepening upward trend (late Lutetian?); (3) regression indicated by an abrupt shallowing of the depositional setting (Bartonian); and (4) deepening of the depositional setting, ending with the drowning of the carbonate ramp (late Bartonian).The evolution of the Eocene Argentina Valley succession is strongly influenced by tectonics related to the Alpine foreland basin development, but locally, and during definite time intervals, the global sea level changes could be recorded by the sediments during periods of stasis in tectonic activity. The regressive events recognized in the studied succession could be related to the sea level fall reported in the global sea level curve during the Bartonian.  相似文献   

5.
6.
Sedimentology can shed light on the emplacement of oceanic lithosphere (i.e. ophiolites) onto continental crust and post-emplacement settings. An example chosen here is the well-exposed Jurassic Mirdita ophiolite in southern Albania. Successions studied in five different ophiolitic massifs (Voskopoja, Luniku, Shpati, Rehove and Morava) document variable depositional processes and palaeoenvironments in the light of evidence from comparable settings elsewhere (e.g. N Albania; N Greece). Ophiolitic extrusive rocks (pillow basalts and lava breccias) locally retain an intact cover of oceanic radiolarian chert (in the Shpati massif). Elsewhere, ophiolite-derived clastics typically overlie basaltic extrusives or ultramafic rocks directly. The oldest dated sediments are calpionellid- and ammonite-bearing pelagic carbonates of latest (?) Jurassic-Berrasian age. Similar calpionellid limestones elsewhere (N Albania; N Greece) post-date the regional ophiolite emplacement. At one locality in S Albania (Voskopoja), calpionellid limestones are gradationally underlain by thick ophiolite-derived breccias (containing both ultramafic and mafic clasts) that were derived by mass wasting of subaqueous fault scarps during or soon after the latest stages of ophiolite emplacement. An intercalation of serpentinite-rich debris flows at this locality is indicative of mobilisation of hydrated oceanic ultramafic rocks. Some of the ophiolite-derived conglomerates (e.g. Shpati massif) include well-rounded serpentinite and basalt clasts suggestive of a high-energy, shallow-water origin. The Berriasian pelagic limestones (at Voskopoja) experienced reworking and slumping probably related to shallowing and a switch to neritic deposition. Mixed ophiolite-derived clastic and neritic carbonate sediments accumulated later, during the Early Cretaceous (mainly Barremian-Aptian) in variable deltaic, lagoonal and shallow-marine settings. These sediments were influenced by local tectonics or eustatic sea-level change. Terrigenous sediment gradually encroached from neighbouring landmasses as the ophiolite was faulted or eroded. An Aptian transgression was followed by regression, creating a local unconformity (e.g. at Boboshtica). A Turonian marine transgression initiated widespread Upper Cretaceous shelf carbonate deposition. In the regional context, the southern Albania ophiolites appear to have been rapidly emplaced onto a continental margin in a subaqueous setting during the Late Jurassic (Late Oxfordian-Late Tithonian). This was followed by gradual emergence, probably in response to thinning of the ophiolite by erosion and/or exhumation. The sedimentary cover of the south Albanian ophiolites is consistent with rapid, relatively short-distance emplacement of a regional-scale ophiolite over a local Pelagonian-Korabi microcontinent.  相似文献   

7.
8.
Conglomerate bodies are wide spread in the Lower Coniacian carbonate of the southern of Tunisia. This paper presents an examination of the stratigraphic architecture of these Coniacian conglomerates. It aims to the understanding of the processes leading to their genesis and the relationship and context with the late Cretaceous sedimentation. These conglomerates are related to the incision of Aptian palaeovalleys in a carbonate platform in an extensional setting. The sedimentary analysis and the geometry of these bodies show that the Cretaceous succession in this area are formed by eight facies within four facies associations, representing a series of distinct depositional environments ranging from alluvial plain to the open marine environment. The sedimentary analysis allowed the recognization of elementary sequence which start with the conglomerate bodies corresponding to the incised valley fills.  相似文献   

9.
Non-marine strata of Early Cretaceous age ('Wealden facies') are found at outcrop in the type localities of the Wessex Basins, southern England (and adjacent subsurface) and in extensive and thick successions filling the North Celtic Sea Basin. Sedimentology, paleontology, petrology and geochemistry have traditionally been used as evidence in determining the climatic, tectonic and sea level controls on Wealden facies, sedimentary processes and stratigraphy. Analysis of seismic data, through seismic facies and sequence stratigraphic analysis, allows direct comparison of the Wealden in these basins and new interpretations to be made of the tectonic and depositional influences. In the north-eastern end of the North Celtic Sea Basin, tectonic controls on seismic facies can be demonstrated and are related to coarse-grained fan-delta horizons documented in core. In the south-western North Celtic Sea Basin, adjacent to the Cretaceous proto-Atlantic, tectonic controls are less apparent, and changes in relative sea level were probably more important in controlling the preservation of stratigraphic sequences. Where the non-marine Lower Cretaceous succession is imaged clearly, the stratigraphic similarity between parts of the North Celtic Sea and the Weald and Channel Basins suggests a wider control by relative sea-level fluctuations. However, important variations in seismic facies within the basins indicate localized, dominant tectonic control. The recognition of a very distinctive 'lower' Wealden seismic facies, observed as undulatory (?channelized) and downlapping reflections, is contrasted with either the parallel or synsedimentary fault-dominated 'upper' Wealden facies. These seismic characteristics reflect the previously recognized climatic/tectonic change from Hastings to Weald Clay Group environments. The debate on tectonics versus eustacy is further complicated: palaeoclimate appears to be a third process responsible for stratigraphic variation.  相似文献   

10.
The Enjefa Beach outcrop comprises marginal marine deposits that are scarcely studied and its facies architecture is largely unknown. With only a few outcrops left in Kuwait, this locality provides an opportunity to better understand the interaction between tectonics and sedimentary processes during the late Holocene, unraveling the final uplift and emergence of Kuwait. Detailed facies analysis revealed that Enjefa outcrop is composed of shoreface and tidal channel facies associations, stacked in a shoaling-upward sequence. One hundred forty-nine paleocurrent measurements were taken at the Enjefa and surrounding areas to understand depositional trends. 2D-structural restoration of seismic data crossing the Ahmadi Ridge was performed along with burial history analysis of a well drilled on the crest of the structure. Facies analysis revealed that the Enjefa outcrop is composed of six depositional facies. These are middle shoreface, upper shoreface, foreshore, lateral accretion, tidal channel, and channel fill/abandonment facies. It is observed that all lateral accretion packages exhibit a unidirectional northern trend. Tectonostratigraphic time-laps simulation revealed that the Ahmadi Ridge final uplift had a direct influence on the tidal channel migration patterns, resulting in a dominant northern migration direction. These results are found to correlate with other Arabian Gulf regions, indicating a regional extent of the late Holocene tectonics.  相似文献   

11.
A biostratigraphic study carried out in the Monti d'Ocre area, Abruzzi, Central Apennines, allowed us to recognize Orbitolina (Conicorbitolina) moulladei ‘Strata 5 (1985) 1’, Praealveolina iberica Reichel and Praealveolina simplex Reichel in uppermost Albian–lower Cenomanian shelf-edge deposits of the Fossato Machè succession. These foraminifers have now been found for the first time in the Apennines of central Italy; their finding is quite important from a palaeobiogeographic viewpoint, as it contributes to the improvement of our knowledge on facies distribution in the circum-Mediterranean regions during the Cretaceous Period. In the study area, the coeval Monte Rotondo and Monte Orsello sections also crop out; these are characterized by bauxite deposits and stratigraphic gaps reflecting episodes of emergence on the carbonate platform. The Monte Rotondo and Monte Orsello sections accumulated in a platform back-reef environment; consequently, in this sector of the Monti d'Ocre area, the depositional environment shifted from a back-reef westward and southward to a shelf-edge northward, during the latest Albian–early Cenomanian. Owing to synsedimentary tectonics, the area investigated underwent differential subsidence: westward and southward, wide areas were uplifted and subjected to emergence, karstification and bauxite accumulation, whereas sedimentation continued in a shelf-edge environment in the north-eastern area.  相似文献   

12.
This paper reviews a detailed stratigraphic and sedimentologic study of a carbonate complex developed on the foreland side of the Neuquén Embayment, a protected shallow-water epicratonic site behind the active edge of the South American plate. Superb outcrops at the core of basement-involved Andean structures expose the shelf-to-basin transition and reveal with clarity the external and the internal architecture of the depositional sequences and component system tracts. Platform carbonates are largely represented by ooid and mainly rhodoid grainstones, with associated patches of coral framestone. The deeper platform and slope facies are composed of oncoidal and skeletal micritic limestones with scattered coral-sponge-algal build-ups. The overall composition and facies pattern bears resemblance to other Late Jurassic carbonate complexes form Europe and with the Smackover Formation from the Gulf Coast Basin of North America.

Analysis based on mapping of the stratal patterns and facies associations in outcrops allowed the recognition of four depositional sequences. Timing provided by ammonite biochronology suggests that eustatic fluctuations were a major factor influencing the carbonate-margin architecture, and regulated episodes of condensed sedimentation, shifts of the depositional belts, and development of stratigraphic discontinuities. The onset and the end of carbonate sedimentation were associated with episodes of marine retreat and accumulation of evaporites and eolian-fluvial deposits at basin-centre locations. However, most of the marine fluctuations recorded within the carbonate complex were insufficient to expose the shelf break (Type 2), and accordingly lowstand system tracts are poorly represented. On the shelf the transgressive system tracts are represented by thin grain-supported carbonate blankets. These taper out downslope into omission surfaces or are replaced by patches of small sponge buildups. Highstand system-tract organization changes through time, reflecting changes in productivity and accomodation, presumably tied to second-order sea-level changes. Callovian highstand accumulation featured a catch-up carbonate system and produced a thin-aggradational ramp configuration, whereas conditions during middle-late Oxfordian allowed a keep-up system and produced outbuilding depositional geometries with steeper slopes.  相似文献   


13.
This paper attempts to investigate the tectonics of the southern Rif Cordillera. Hydrogeological and oil well data, together with interpretation of seismic reflection lines help to characterize the architecture of the Rharb–Mamora Basin located in the frontal region of the Gibraltar Arc. The facies map constructed from the drilling data exhibits four main types of Pliocene facies: (i) conglomerates; (ii) limestones; (iii) sandstones and sands more or less rich with shelly remains; (iv) clays. The lateral variation of deposits is accompanied by thickening, which can reach a few tens of metres. Thickening of layers and lithofacies variation indicate synsedimentary faulting processes. Two major fault zones have been identified: Kenitra–Sidi Slimane Fault Zone (K2SFZ) and Rabat–Kenitra Fault Zone (RKFZ). In the western coastal area, the geometrical configuration suggests a partition into horsts and grabens in the southern part, and a system of three geological units in the northern part. The analysis and interpretation of the gravity data reveal an important gravity anomaly, referred to as the Kenitra Gravity Anomaly. It corresponds to the Hercynian faults deduced by the seismic reflection line interpretation: K2SFZ and RKFZ. From Larache to El Jadida cities, the Kenitra area represents the hinge between the positive and negative gravity values, with a major negative anomaly in the eastern part of Kenitra. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT The middle member of the Loma del Toril formation (Kimmeridgian-Lower Tithonian, Intermediate units, Betic Cordillera) consists of up to 250 m of resedimented carbonate material. Three units have been distinguished. The lower, Unit A, is composed of conglomerates that are interpreted as deposited in a major valley on the lower slope of a basin margin. Unit B, calcarenites with some conglomerate intercalation, is interpreted as distributary channel deposits and Unit C, calcarenites, as the result of poorly developed depositional lobes of a submarine fan. The three units form a recessional sequence. They cannot be related to a transgression because the Kimmeridgian-Lower Tithonian in the Prebetic zone, where epicontinental sediments exist, is clearly regressive. The upper member of the Loma del Toril formation, made up of pelagic limestones with sporadic calcarenites or even thin conglomerate intercalations, is best interpreted as a basin plain facies. Lateral facies relationships suggest that down-faulting of the basin floor controlled the development of the fan. The scarce occurrence of turbidite beds in the basin plain facies, the prevailing channelized facies and the obvious lack of overbank deposits, suggest a transport system of low efficiency, with fan deposition at the base of slope. The underlying Jurassic strata cropping out along fault scarps, coeval carbonate shelf material, and upper slope deposits were the main sources of turbiditic resediments. With respect to basin morphology sedimentary processes and fan geometry, this Jurassic turbidite basin can be compared with the modern California continental borderland. Ancient analogues have been described by Reinhart (1977) and Price (1977).  相似文献   

15.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

16.
湖南地区地处扬子陆块和华夏陆块之间,根据沉积地层的岩石学特征、古生物特征及其他沉积特征变化,将湖南地区晚奥陶世桑比期—凯迪期早期的沉积相,划分为开阔台地相、浅海陆棚相、深水盆地相和陆架边缘—斜坡相。开阔台地相以沉积“龟裂纹”灰岩和瘤状灰岩为特征,浅海陆棚相转为沉积砂质板岩,板岩并夹有粉砂岩及泥灰岩透镜体。深水滞流盆地发育黑色碳质页岩及含放射虫硅质页岩,沉积厚度很小,代表了一个相对缺氧还原的欠补偿深水环境;陆架边缘—斜坡相则为岩屑石英粉—细砂岩,长石石英粉—细砂岩及砂质板岩、板岩的韵律互层,沉积厚度超过1000m,具浊流沉积特征。晚奥陶世桑比期—凯迪期早期,湖南地区总体表现为由西北和东南方向往中部逐渐变深,湘中南一带为水体最深地区。  相似文献   

17.
Formation conditions of the Asselian-Sakmarian carbonate deposits in the region are reconstructed on the basis of scrutinization of their lithological characteristics. Two facies zones are identified and described: broad shoal zone with the biostrome massif and its slope framing dominated by the organogenic-clastic and microclotted limestones. Relationship of reservoir properties with rock types and facies is examined. Structural specificity of natural reservoir in the biostrome massif is demonstrated.  相似文献   

18.
RHEE  JO  & CHOUGH 《Sedimentology》1998,45(3):449-472
The north-western part of the Cretaceous Kyongsang Basin, south-east Korea, comprises alluvial deposits of conglomerate, gravelly sandstone, sandstone and mudstone which can be grouped into four allomembers bounded by stratigraphic discontinuities. The discontinuities trend NW–SE and are marked by distinct facies transitions, abrupt emplacement of conglomerate and thin but persistent mudstone beds. Sedimentary facies and architectural analyses reveal that each allomember formed a depositional system of fluvial channel networks draining toward the south-east with alluvial fans on the northern margin. Each allomember can be characterized by distinctive architecture of channel-fills, clast composition of conglomerate and sandstone/mudstone ratio. Successive units show an eastward shift in the locus of deposition, suggesting basinward relocations of alluvial systems. Such variations with time and space are interpreted to reflect changes in accommodation space and sediment supply during basin evolution, probably caused by fault movements. This study shows that detailed mapping, combined with architectural analysis, and the establishment of alluvial allostratigraphy can help assess changes in alluvial systems and structural development of the basin.  相似文献   

19.
Climate and tectonics play important roles in controlling processes of transport and deposition on alluvial fans, but the bedrock lithology in the fan catchment area is also a significant, independent factor. Adjacent Oligo-Miocene alluvial fan deposits on the northern margin of the Ebro Basin display contrasting depositional characteristics with one dominated by the deposits of debris flows and the other by deposition from flows of water. A difference in clast compositions indicates that the two studied fans (the Nueno and San Julián fans) had contrasting bedrock lithology in their drainage basins. The proximal facies of the Nueno fan body contains matrix-supported conglomerate beds with up to 80% pebble clasts of gypsum in a matrix of gypsiferous sand, interbedded with gypsarenite beds. The drainage basin of this fan was dominated by Triassic bedrock consisting of beds of gypsum, marl and micritic limestone. The San Julián fan body comprises clast-supported, polymict conglomerate beds containing pebbles from Triassic, Cretaceous and Palaeogene limestone units that are exposed in the adjacent part of the basin margin. The interfingering of the deposits of these two fans demonstrates that they were contemporaneous. Given the consistent climate, the differences in fan depositional processes must therefore be attributed to the contrasting bedrock lithology in their drainage basins. A drainage basin consisting mainly of marl and gypsum bedrock provided sufficient fine-grained material to generate debris flows, whereas more dilute, water-lain processes dominated where the drainage basin was largely limestone strata.  相似文献   

20.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号