首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Concentrations of some heavy metals and trace elements such as Cr,Ga,Ni,Zn,Mo,Cu, Pb,Yb,Y,Nb,Ti,Sr,Ba,Mn,Sc,Co,V,Zr,Fe,Al,W,Se,Bi,Sb,As,Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated.The distribution of the elements in the shells is categorized into four groups.Of these,concentrations of 12 elements(As,Bi,Cd,Co,Ga,Mo,Nb, Sb,Se,Sc,W and Yb)are below zero [(0.053-0.79)×10~(-6)];concentrations of seven elements(Cr,Ni, Pb,V,Y,Zr and Cu)are(1.0-6.0)×10~(-6);concentrations of four elements(Ti,Mn,Ba and Zn)are 10- 20×10~(-6);and concentrations of five elements(Si,Al,Fe,Mg and Sr)are(47.44-268.11)×10~(-6).The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina(Linné),Pitar-rudis(Poll),Nassarius reticulatus(Linné),Venerupis senescens (Coocconi),Mytilus galloprovincialis(Lamarck),Mytilaster lineatus(Gemelin in Linné)and Chlamys glabra.It was found that,in mollusk taxonomy,the elements have unique values.In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks.In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment.Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

2.
To evaluate trace element soil contamination, geochemical baseline contents and reference values need to be established. Pedo-geochemical baseline levels of trace elements in 72 soil samples of 24 soil profiles from the Mediterranean, Castilla La Mancha, are assessed and soil quality reference values are calculated. Reference value contents (in mg kg?1) were: Sc 50.8; V 123.2; Cr 113.4; Co 20.8; Ni 42.6; Cu 27.0; Zn 86.5; Ga 26.7; Ge 1.3; As 16.7; Se 1.4; Br 20.1; Rb 234.7; Sr 1868.4; Y 38.3; Zr 413.1; Nb 18.7; Mo 2.0; Ag 7.8; Cd 4.4; Sn 8.7; Sb 5.7; I 25.4; Cs 14.2; Ba 1049.3; La 348.4; Ce 97.9; Nd 40.1; Sm 10.7; Yb 4.2; Hf 10.0; Ta 4.0; W 5.5; Tl 2.3; Pb 44.2; Bi 2.2; Th 21.6; U 10.3. The contents obtained for some elements are below or close to the detection limit: Co, Ge, Se, Mo, Ag, Cd, Sb, Yb, Hf, Ta, W, Tl and Bi. The element content ranges (the maximum value minus the minimum value) are: Sc 55.0, V 196.0, Cr 346.0, Co 64.4, Ni 188.7, Cu 49.5, Zn 102.3, Ga 28.7, Ge 1.5, As 26.4, Se 0.9, Br 33.0 Rb 432.7, Sr 3372.6, Y 39.8, Zr 523.2, Nb 59.7, Mo 3.9, Ag 10.1, Cd 1.8, Sn 75.2, Sb 9.9, I 68.0, Cs 17.6, Ba 1394.9, La 51.3, Ce 93.5, Nd 52.5, Sm 11.2, Yb 4.2, Hf 11.3, Ta 6.3, W 5.2, Tl 2.1, Pb 96.4, Bi 3.0, Th 24.4, U 16.4 (in mg kg?1). The spatial distribution of the elements was affected mainly by the nature of the bedrock and by pedological processes. The upper limit of expected background variation for each trace element in the soil is documented, as is its range as a criterion for evaluating which sites may require decontamination.  相似文献   

3.
The bioaccumulation of trace metals in the carbonate shells of mussel and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin). Mineralogical analysis showed that the carbonate skeletons of the mytilid mussel Bathymodiolus sp. and the vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for the content of a variety of elements in the bivalve carbonate shells from various hydrothermal vent sites. The analysis of the chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from the mollusk biotopes revealed the influences of environmental conditions and some biological parameters on the bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by a factor of 20–30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that the essential elements Fe, Mn, Ni, and Cu were more actively accumulated during the early ontogeny of the shells. The high concentration factors of most metals (n × 102n × 104) indicate an efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on the shell surface was estimated to be no higher than 50% of the total amount, varying from 14% for Fe to 46% for Mn.  相似文献   

4.
A total of 33 elements (Ag, Al, Au, Bi, Br, Cd, Ce, Co, Cr, Cs. Eu, Fe, Ge, Hf, Ir, Lu, Na, Ni, Os, Pd, Rb, Re, Sb, Se, Se, Si, Sm, Tb, Te, Tl, U, Yb and Zn) were analyzed by radiochemical and instrumental neutron activation in four eucrites: Juvinas (brecciated), Ibitira (vesicular, unbrecciated) and Moore County and Serra de Magé (cumulate, un brecciated).When arranged in order of volatility. Cl—normalized abundance patterns allow nebular and planetary effects to be distinguished. The stepped lithophile pattern reveals the dominance of nebular processes; in Ibitira, refractory elements (Hf, Lu, Tb, Ce, Sm, Yb, U, Eu) are (13.1 ± 0.7) × Cl chondrites; volatile elements (Rb. Cs, Br, Bi) are (6.0 + 1.5) × 10?2 Cl. The depletion of Tl seems inherent to the eucrite parent body and is mirrored in the chalcophile elements by the marked deficit of Te relative to Se; apparently volatiles were accreted as a fractionated C3-like component. Consistent but subtle Cl-normalized abundance differences between eucrites (Serra de Magé < Moore County < Juvinas < Ibitira) result from crystal/liquid differentiation; Ibitira approximates the composition of an undifferentiated eucrite magma. The siderophile pattern retains little sign of nebular processes, but reflects planetary metal-silicate partition.The bulk composition of the eucrite parent body closely resembles that of H-chondrites, except for two features: moderately volatile elements (e.g. Na, K. Rb) are very much lower, apparently due to the accretion of more chondrule-like material; the metallic Fe-Ni content is only ~13%, even though total iron is very similar.  相似文献   

5.
A method for the determination of major, minor and trace elements in silicate samples by ICP‐QMS and ICP‐SFMS applying isotope dilution‐internal standardisation (ID‐IS) and multi‐stage internal standardisation has been developed. Samples with an enriched isotope of 149Sm (spike) were decomposed by a HF/HCIO4 mixture and stepwise drying and finally diluted. In ID‐IS for trace element analyses by Q‐pole type ICP‐MS (ICP‐QMS), the Sm concentration was determined by ID, while other trace elements (Li, Be, Rb, Sr, Y, In, Cs, Ba, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Bi, Th and U) were determined using the 149Sm intensity as an internal standard. Major and minor elements were determined by multi‐stage internal standardisation, with Na, Mg, Al, P, Ca, V, Mn, Fe and Co measured by sector magnetic field type ICP‐MS (ICP‐SFMS) at middle resolution (MR; M/AM =~ 3000) using Sr determined by ICP‐QMS in the sample as the internal standard. Potassium, Sc, Ni, Cu, Zn and Ga were measured at high resolution (HR; M/ΔM ~ 7500) using the Sr concentration obtained by ICP‐QMS or the Mn concentration obtained by ICP‐SFMS at MR as internal standard. The merit of ID‐IS is that accurate dilution of the sample is not required. Matrix effects on elemental ratios down to a dilution factor (DF) of 600 were not observed in either types of mass spectrometry. Pseudo‐flow injection (FI), where transient signals were integrated, was used in ICP‐QMS, while conventional continuous sample introduction was used in ICP‐SFMS, resulting in total required sample solutions of 0.026 ml and 0.08 ml, respectively. Detection limits were low enough to determine these elements in depleted ultramafic rocks, and typical reproducibilities for basalts were 3% (Li‐Be), 1% (Rb‐U), 5% (In, Tl and Bi), 7% (Sc‐Ga) and 3% (major elements). Carbonaceous chondrites including Orgueil (Cll), Murchison (CM2) and Allende (CV3), as well as reference materials, JB‐1, ‐2, ‐3, JA‐1, ‐2, ‐3 and JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS), were analysed to show the applicability of this method. Une méthode permettant la détermination des éléments majeurs, mineurs et en trace dans les echantillons silicates par ICP‐QMS et ICP‐SFMS a été développée. Elle combine la standardisation interne par dilution isotopique (ID‐IS) et la standardisation interne en deux étapes. Les échantillons, auxquels est ajouté un spike enrichi en 149 Sm, sont décomposés par une mixture HF/HCIO4′ séchés progressivement puis dilués. Dans la phase de standardisation interne par dilution isotopique avec un ICP‐MS à quadrupôle (ICP‐QMS), la concentration en Sm est déterminée par dilution isotopique tandis que les autres éléments en trace (Li, Be, Rb, Sr, Y, In, Cs, Ba, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Bi, Th et U) sont déterminés en utilisant le signal de 149 Sm comme standard interne. Les éléments majeurs et mineurs sont déterminés par standardisation interne par étapes, avec Na, Mg, Al, P, Ca, V, Mn, Fe et Co mesurés par ICP‐MS à secteur magnétique (ICP‐SFMS) en résolution intermédiaire (MR; M/ΔM =~ 3000 en utilisant Sr, mesuré par ICP‐QMS comme standard interne. Les éléments K, Sc, Ni, Cu, Zn et Ga sont mesurés en Haute Résolution (M/ΔM ~ 7500) en utilisant comme standard interne, soit la concentration en Sr obtenue par ICP‐QMS soit la concentration en Mn obtenue par ICP‐SFMS en résolution moyenne. La technique de ID‐IS a l'avantage de ne pas nécessiter la connaissance exacte du facteur de dilution de l'Schantillon. Aucun effet de matrice sur la mesure de rapports élémentaires n'a été observé sur l'un ou l'autre des spectromètres de masse, ceci jusqu'à un facteur de dilution (DF) de 600. Les analyses par ICP‐QMS ont été effectuées par pseudo injection de flux (Fl) et intégration d'un signal transitoire tandis que les analyses par ICP‐SFMS l'ont été avec un système conventionnel d'introduction. Le volume total de solution d'échantillon nécessaire etait de 0.026 ml et 0.08 ml respectivement. Les limites de détection étaient suffisamment basses pour permettre la détermination de ces éléments dans des roches ultrabasiques et les reproductibilités pour les basaltes étaient de l'ordre de 3% (Li‐Be), 1 % (Rb‐U), 5% (In, Tl et Bi), 7% (Sc‐Ga) et 3% (tous les éléments majeurs). Des chondrites carbonées dont Orgueil (Cll), Murchison (CM2) et Allende (CV3) ainsi que des matériaux de référence JB‐1, ‐2, ‐3, JA‐1, ‐2, ‐3 et JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 et DTS (USGS) ont été analysés pour démontrer l'applicabilité de la méthode.  相似文献   

6.
Analytical data are reported for As, Bi, Sb, Se and Te in fifty five geological reference materials (RM). The method used is based on hydride generation inductively coupled plasma-mass spectrometry (HG-ICP-MS) following digestion of the samples in the mixed acid attack of HF-HClO4-HNO3-HCl. Analytes were separated from potential interferences by coprecipitation with La(OH)3. This scheme results in method detections limits of: 1 ng g?1 for Bi and Te; 6 ng g?1 for Sb and Se; and 10 ng g?1 for As. The average relative standard deviation (RSD) for three 0.5 g subsamples of each RM analysed by this method are: 3.7% for As in the range 0.35-187 μg g?1; 5.6% for Sb in the range 0.03-22 μg g?1; 6.8% for Bi in the range 0.002-48 μg g?1; 7.2% for Se in the range 6-3610 ng g?1; and 9.0% for Te in the range 2-445 ng g?1.  相似文献   

7.
This paper describes the concentrations of heavy metals in soils and in raisins (sultanas) cultivated upon the Gediz Plain (Manisa), western Turkey, which is cut by major roads from ?zmir to ?stanbul and ?zmir to Ankara. A total of 212 samples of surface soil and 82 raisin samples were analysed. Soil samples have nearly same mineralogy, quartz, calcite, magnetite, pseudo-rutile and clay minerals. Dolomite is seen especially in areas close to Neogene sediments. Clay minerals are mainly mica (illite?Cmuscovite), chlorite/kaolinite, smectite and mixed layers (Sm-Il). The concentrations of 21 elements (Ba, Ni, Mo, Cu, Pb, Zn, Co, Mn, As, U, Sr, Cd, Sb, Bi, Cr, B, W, Hg, Sn, Li and organic C) were determined in the surface soils. The degree of element enrichment in soil can be measured in many ways, the most common of which are the geoaccumulation index (Igeo), enrichment factor and the pollution index. Arsenic and Sb showed the highest Igeo values, corresponding to Igeo classes 3?C4. Hence, the area is characterised as ??being heavily contaminated to polluted?? by As and Sb. Arsenic contamination has been reported from all over world. Arsenic-related pollutants enter the groundwater system by gradually moving with the flow of groundwater from rains and irrigation. Gediz Plain forms the main groundwater supply of ?zmir city. The enrichment factor (EFarsenic) of the analysed soil samples is around 76, which corresponds to ??extremely high enrichment??. The concentrations of 33 elements (Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Se, Ag, Na, Sr, Ta, Th, Sn, Ti, U, V, Zn and Zr) were determined in the raisin samples. The Pb and Cd contents of raisins are of great concern due to their toxicity. Pb contents ranged between 0.05 and 0.46?mg?kg?1, and average Cd content was 0.04?mg?kg?1. Only one sample contained high level of Cd, 0.23?mg?kg?1. After cleaning the raisins, the heavy metal concentrations were low as in the European Community (EC) regulation No: 466/2001 for allowable levels of Pb (0.2?mg?kg?1) and Cd (0.05?mg?kg?1).  相似文献   

8.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analyzed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland and in the plagioclase-rich unbrecciated eucrite, Serra de Magé.Garnet anorthosite 84428, which has an unusually sodic plagioclase, is spectacularly enriched in Cs, K, Rb. Tl and, to a lesser degree, Te. This appears to be the result of later metasomatism and not a reflection of fractionation trends within the anorthositic complex. For the remaining Fiskenaesset rocks, a factor analysis yields 5 principal factors for linear data for 22 elements and 6 factors for data transformed (log, 3√, √) to give approximately normal distributions. Linear correlations are controlled by high values, whereas the logarithmic transform increases the influence of the lowest values. Enrichment of several elements in chromitite 132022 underlies linear Factor 1. Six of these elements Co, Cr, Fe, Ir, Ni, Zn and possibly Re are probably hosted by chromite. In other zones of the intrusion, different fractionation trends may be more important, since in the transformed analysis these elements divide between Factor 1 (Co, Zn, Ni, Fe) and Factor 4 (Ir, Cr and also Au). Linear Factor 2 reflects the strong mutual correlation between Tl, Rb and An, the anorthite content of plagioclase. Transformed Factor 3 emphasizes the anticorrelation of Na and Sm with An. The positive correlations of Cs, U and Ge (linear Factor 3; transformed Factor 2) are largely due to their concentration in later crystallizates, but enrichment in lower zone gabbros of high An content perhaps indicates concentration in minor or accessory cumulate minerals. Flat chondrite-normalized rare earth element patterns in several anorthosites (except for a small positive Eu anomaly) suggests that the Fiskenaesset magma was relatively unfractionated.Factor 4 (linear) and Factor 5 (transformed) reflects the geochemical coherence of Se and Te. The sympathetic enrichment of Sb and Cd in 3 rocks, resulting in Factor 5 (linear) and Factor 6 (transformed) may be due to the lack of a suitable Zn sulfide host for Cd.In 3 rocks of true anorthosite composition, 8 volatile elements show rather constant abundance when normalized to Cl chondrites (mean 4.2 ± 0.4% Cl), possibly suggesting that volatile-rich material was accreted late in the Earth's formation, perhaps after core segregation. These anorthosites are higher than lunar anorthosite 15415 by a factor of 58 ± 9 in volatile elements. Siderophile and chalcophile elements are much more variable in Cl-normalized abundances in both lunar and terrestrial anorthosites, but surprisingly give somewhat similar Earth/Moon abundance ratios.Volatile elements in terrestrial oceanic basalts and lunar mare basalts are not as uniformly abundant as in anorthosites. but nevertheless yield a similar Earth/Moon ratio of 44 ± 8.Volatile elements in Serra de Magé are more abundant than in lunar anorthosites, but lower than in terrestrial equivalents, averaging (3.6 ± 0.8) × 10?3C1.  相似文献   

9.
The distribution of selected critical elements in the sedimentary rocks of the Carboniferous coal-bearing series within the Polish Coal Basins is presented.Critical elements such as Be,Mg,Si,P,Sc,V,Co,Y,Nb,In,Sb,La,Ce,Hf,Ta,W,Bi were analysed using inductively-coupled plasma mass spectrometry(ICP/MS).Concentrations of elements such as Sb,Bi,In and,to a slightly lesser extent,Nb,as well as Sc,show average concentrations higher than those from the upper continental crust.The average concentrations of elements like Hf,Mg,P,Y,La,and Ce are slightly lower than in the upper continental crust.Other elements,such as Be,Co,Si,Ta,W and V have average concentrations that are similar,but slightly enriched or slightly depleted,relative to the upper continental crust.The research showed enrichment of some critical elements in the analysed samples,but not high enough that extraction would be economically viable.Statistical methods,which include correlation coefficients between elements and cluster analysis,reveal a strong positive correlation between elements like Be,Bi,Nb,Sc,Ta,W and V.Very high,almost total,positive correlation is also noted between La and Ce.  相似文献   

10.
The potential applications of As, Sb and Bi as pathfinder elements in geochemical exploration have been researched using a new, rapid technique for the simultaneous determination of the three elements. Following a warm hydrochloric acid sample leach, the volatile hydrides of the elements are generated and flushed into an inductively-coupled plasma linked to an emission spectrometer. The technique offers a combination of good analytical precision and detection limits of 100 ppb for each of the elements.The principal sulphide ore minerals commonly contain traces of As, Sb and Bi, and concentrations of more than 1% of any one of these have been found in some sulphide specimens. During sub-aerial oxidation of sulphides, any As, Sb and Bi present is released and forms dispersion patterns in the surficial environment. Geochemical surveys of localities in the United Kingdom have demonstrated that anomalous dispersion trains of these elements can be detected in the sediments of streams draining the mineralized localities. In a geochemical mapping programme covering 16,000 km2 of central Nepal, over 3500 stream sediment samples were analyzed for As, Sb and Bi, and many known occurrences of Cu, Pb and Zn mineralization are reflected by As, Sb and Bi anomalies. However, bedrock lithology appears to be an important factor influencing Sb and Bi dispersion patterns.In the areas studied, some or all of the elements As, Sb and Bi produce stream sediment anomalies that compare favourably in terms of contrast and extent with the heavy metal expressions, even though none of the three elements have been reported as important constituents of the mineralization with which they occur.  相似文献   

11.
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for the elements Ag, Au, Bi, Br, Cd, Ce, Cs, Eu, Ge, In, Ir, Lu, Nd, Ni, Os, Pd, Pt, Rb, Re, Sb, Se, Sn, Tb, Te, Tl, Yb, and Zn. The data were combined with 9 earlier analyses from this laboratory and examined for evidence of chemical fractionation in C1 chondrites.A number of elements (Br, Rb, Cs, Au, Re, Os, Ni, Pd, Sb, Bi, In, Te) show small but correlated variations. Those of the first 8 probably reflect hydrothermal alteration in the meteorite parent body, whereas those of Sb, Bi, In, and Te may at least in part involve nebular processes. Br and Au show systematic abundance differences from meteorite to meteorite, which suggests hydrothermal transport on a kilometer scale. The remaining elements vary from sample to sample, suggesting transport on a centimeter scale.There is no conclusive evidence for nebular fractionation affecting C1 's. Though C1 chondrites have lower ZrHf and IrRe ratios than do other chondrite classes, these ratios vary in other classes, suggesting that those classes rather than C1's are fractionated. Three fractionation-prone REE—Ce, Eu, and Yb have essentially the same relative abundances in C1's and all other chondrite classes, and hence apparently are not fractionated in C1's. We did not confirm the large Tb and Yb variations in C1's reported by other workers.We present revised mean C1 abundances for 35 elements, based on the new data and a critical selection of literature data. Changes are generally less than 10%, except for Br, Rb, Ag, Sb, Te, Au, and the REE.The Plainview C2 xenolith has normal trace element abundances, except for 3 elements falling appreciably above the C2 range: Rb, Cs, and Bi. Hydrothermal alteration may be the reason for all 3, though nebular fractionation remains a possibility for Bi.  相似文献   

12.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

13.
Data reported by laboratories contributing to the GeoPT proficiency testing programme for geochemical laboratories over the period from 2001 to 2011 have been assessed to identify the elements and concentration ranges over which analytical performance can be considered satisfactory. Criteria developed in the paper indicated that performance in the content determination of the elements/constituents SiO2, Al2O3, MnO, Cs, Dy, Er, Eu, Ga, Hf, Ho, Lu, Nd, Pr, Sm, Sr, Tb, Tl, Tm, U, Y, Yb and Zn was satisfactory over the full concentration range assessed. The elements/constituents TiO2, Fe2O3(T), MgO, CaO, Na2O, K2O, P2O5, Ba, Be, Cd, Ce, Co, Gd, La, Li, Nb, Rb, Sb, Sc, Sn, Ta, Th, V and Zr showed some degradation in performance at lower concentration levels (approaching the detection limit of some techniques). Performance in determining LOI, As, Bi, Cr, Cu, Ge, Mo, Ni, Pb and W was in general unsatisfactory over the full concentration range assessed. Other elements (especially Fe(II)O, H2O+, CO2, Ag, Au, B, Br, Cl, F, Hg, I, In, Ir, N, Os, Pd, Pt, Re, Rh, S, Se, Te) could not be evaluated as they were not routinely reported by laboratories participating in the GeoPT programme, often because they are present in silicate rocks at sufficiently low concentrations to require a pre‐concentration stage. Some suggestions are made for the causes of unsatisfactory performance, but further progress will require a detailed assessment of the methods used by participating laboratories, which will form the subject of a further paper.  相似文献   

14.
随着常规镍来源的硫化镍矿资源的日益枯竭,可直接生产氧化镍、镍锍和镍铁等产品的红土镍矿倍受关注。对于红土镍矿中主量、次量、痕量元素的检测,相同的检测项目存在多种测试方法,且部分相同原理的测试方法存在细节上的差异,使得检测者选择合适的检测方法变得困难。本文综述了近年来红土镍矿中24种元素测定的样品前处理方式及分析技术研究进展。样品前处理方式依据目标元素及后续的分析方法进行选择,其中酸溶法和碱熔法用途最广。酸溶法引入的盐分少,操作简单,但是分解过程中易导致挥发元素As、Sb、Bi、Hg的损失,Cr易随高氯酸冒烟损失。碱熔法分解能力强,适合分析Cr、Si、全铁等项目,但会引入大量的盐类和因坩埚材料损耗而带入其他杂质,给后续分析带来困难。红土镍矿的分析技术依据实验室条件及目标元素的性质和浓度进行选择。电感耦合等离子体发射光谱法(ICP-AES)是主量、次量元素的主要分析方法,适合于分析含量为10-5~30%级别的金属元素;X射线荧光光谱法主要用于分析含量为10-3~1级别的元素,尤其适合于测定Al、Si、Ti、V和P,由于该方法的准确性依赖于一套高质量的标准样品,故更适合炉前检测或检测大批红土镍矿样品。电感耦合等离子体质谱法(ICP-MS)最适合于分析10-4含量以下的重元素,特别是稀土和贵金属元素。原子吸收光谱法(AAS)适合于分析10-4~10-2级别的Ca、Mg、Ni、Co、Zn、Cr、Mn等低沸点、易原子化元素。分光光度法主要用于分析Ni和P。原子荧光光谱法(AFS)主要用于分析As、Bi、Sb等易形成气态氢化物的元素。容量法主要用于分析Al、Fe、Mg和Si O2等主含量元素。尽管AAS、分光光度法、AFS法和容量法检测周期长,但所用仪器为实验室常规配置,可满足缺乏相应大型仪器实验室的日常检测。本文认为,针对各种检测方法的适用性及存在问题,应从开发微波消解法、固体进样直接测汞法、ICP-MS法以及Cr与其他元素同时分析的快速分析方法等方面开展研究,建立灵敏、准确的检测方法,从而更好地服务于红土镍矿的贸易、检验和综合利用。  相似文献   

15.
New analytical results are reported for rarely determined elements Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl and Bi in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate glasses and the NIST SRM 610‐614 synthetic soda‐lime glasses using 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. The method used involved external calibration against GOR132‐G for Ir and NIST SRM 610 for other elements, internal standardisation using Ca, and ablation with a crater diameter of 160 μm and a pulsed laser repetition rate of 10 Hz. Small amounts of nitrogen (5 ml min?1) were added to the central channel gas of the plasma to improve the limits of detection for most of these elements by a factor of 1.2–2.5 and to reduce the oxide interference level to 0.02% (ThO+/Th+). Under these conditions, the LODs for most of these rarely determined elements were within the range 0.1 to 10 ng g?1. The operating conditions that were required to minimise ICP‐induced fractionation (U+/Th+≈ 1) in the mode without nitrogen were accompanied by a 50–60% reduction in sensitivity for elements such as Ca, Au and Pt. In contrast, ICP‐induced fractionation could be minimised (U+/Th+≈ 1) with no loss of analyte sensitivity in the nitrogen mode. Interferences of CuAr+, ZnAr+, Cd+, Pb2+ and Sn+ on Pd+, Rh+, Cd+ and In+ were corrected. Oxide interferences were not considered due to their lower production rate. Analytical precision, as given by one relative standard deviation (% RSD) was less than 15% for most of the elements present at concentrations greater than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with a correlation coefficient of ?0.76. This trend indicates that possible chemical heterogeneities for most of these elements are smaller than the analytical uncertainty. Our results for Be, B, Ge, Sb and W are generally in good agreement with their reference values. In contrast, other elements in many of the reference glasses have only information values, upper limits or even no values, which restrict any detailed evaluation of the accuracy of the determined values. However, concentrations from multiple isotopes of one element analysed in this study showed excellent agreement, which guarantee the quality of our data to a certain extent.  相似文献   

16.
Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg?1) and certain heavy metals (up to 321.7 mg kg?1 for Bi, 5,414 mg kg?1 for Cu, 20,000 mg kg?1 for Pb, 980.6 mg kg?1 for Sb, and 22 mg kg?1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg?1) and Zn (up to 20,000 mg kg?1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.  相似文献   

17.
We have analyzed by RNAA 25 aubrite and 9 diogenite samples for 13 to 29 siderophile, volatile, and lithophile trace elements. Both meteorite classes show a typically igneous siderophile element pattern, with Ir, Os, Re, Ge more depleted than Au, Ni, Pd, Sb. But aubrites tend to have about 10 × higher abundances (10?3 ? 10 ? 4 × Cl for the first 4 and 10?2?10?3 × Cl for the last 4 siderophiles), apparently reflecting smaller metal/silicate distribution coefficients at lowerf(O2), or less complete segregation of metal. Se is surprisingly abundant in aubrites (up to 0.4 × Cl), but Te is less so (SeTe ? 5 × Cl), apparently due to its stronger siderophile character. Other volatiles (Ag, Zn, In, Cd, Bi, T1) show depletions intermediate between lunar dunite and the Earth's mantle.Of 7 aubrites analyzed for REE (Ce, Nd, Eu, Tb, Yb, Lu), 6 are depleted in REE (0.08?0.5 × Cl) and 5 show negative Eu anomalies (the exceptions are Bishopville and Mt. Egerton silicate). This supports an igneous origin, as already noted by Boynton and Schmitt (1972). No samples of the complementary, basaltic and feldspathic rocks have been found thus far, but one of our samples of Khor Temiki dark is a candidate for the basalt. It is 5?7 × enriched in REE and only slightly less so in Rb, Cs, and U. Though shocked and enriched in siderophiles to ~0.05 × Cl, it apparently represents a new meteorite class.Three diogenites analyzed for REE show very diverse patterns, from strongly depleted in light REE for Tatahouine (Ce = 0.01 × Cl) to flat for Garland (~2.5 × Cl). The data confirm the trends found by Fukuokaet al. (1977) as well as their interpretations.Factor analysis shows several parallel groupings for aubrites and diogenites: siderophiles (Re, Ir, Os, Pd, Ge), chalcophiles (Se, Te), volatiles (Ag, In, Tl) and incompatibles (U, REE, and Cs or Rb). But there are some differences for elements such as Ni, Sb, Cd, Bi, Au, and Zn, most of which behave more sensibly in aubrites than in diogenites.Several element pairs that differ greatly in volatility (Cs-U, Ge-Ir) correlate closely in aubrites, in approximately Cl-chondrite proportions. These correlations, and other lines of evidence, suggest strongly that aubrites originated by igneous processes in their parent body, not by direct nebular condensation. The source material may have resembled EL chondrites in oxidation state and depletion of refractories, metal, and volatiles.  相似文献   

18.
Pollution from mining activities is a significant problem in several parts of the Republic of Macedonia. A geochemical study of the surficial sediments of Lake Kalimanci in the eastern part of the Republic of Macedonia was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing an enrichment factor (EF). The major and trace element contamination in surficial lake sediments was studied to assess the effects of metalliferous mining activities. The mean concentrations of major elements (wt%) Si 23.5, Al 7.9, Fe 6.6, Mg 1.3, Ca 3.8, Na 1.1, K 2.3, Ti 0.4, P 0.2, Mn 0.6 and trace elements ranged within Mo 1.0–4.6 mg kg?1, Cu 144.4–1,162 mg kg?1, Pb 1,874–16,300 mg kg?1, Zn 2,944–20,900 mg kg?1, Ni 21.7–79.3 mg kg?1, Cd 16.5–136 mg kg?1, Sb 0.6–3.6 mg kg?1, Bi 3.0–24,3 mg kg?1 and Ag 1.4–17.3 mg kg?1. The EF ranged within 0.12–590.3. Among which, Cd, Pb, Zn and As have extremely severe enrichment. The data indicate that trace elements had extremely high concentrations in Lake Kalimanci surficial sediments owing to the anthropogenic addition of contaminants.  相似文献   

19.
Microbiological studies have always had an important role in the evaluation of drinking water quality. However, since geological processes are the most important factors controlling the source and distribution of chemical elements in natural waters, the importance of geochemical data must not be underestimated. This study presents data on pH, conductivity and concentrations of 69 elements and ions (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, Br, HCO3, Cl, F, NH4+, NO2, NO3, PO43−, SO42−, SiO2) from 186 bottled mineral waters of 158 different Italian name brands. Analyses show a large range in concentrations for most of these elements, with variations up to four orders of magnitude. Our data demonstrate that some elements (such as Be), generally considered unlikely to occur, can instead reach surprisingly high levels in drinking water, and also how packaging can release some trace elements to the bottled water. Data analysis shows that the implementation of an international database of bottled water geochemistry and of potential toxicological effects is of paramount importance to provide a robust data set which would be useful to set international action levels and guidelines to secure bottled water quality, whose consumption has steadily increased in the recent years. A new formula to calculate nitrate and nitrite tolerable concentration levels in waters intended for human consumption is proposed, to take into account that about 5% of dietary nitrate in humans is converted to nitrite.  相似文献   

20.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号