首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The solar inertial motions (orbits) (SIMs) in the years 1840–1905 and 1980–2045 are of a disordered type and they are nearly identical. This fact was used for assessing predictive capabilities for the sizes of three future sunspot cycles and for the time variation of the geomagnetic aa-index up to 2045. The author found that the variations in sunspot numbers in the interval 1840–1867 and in the interval 1980–2007 are similar, especially after 1850 (1990). The differences may be ascribed to the lower quality of the sunspot data before 1850. A similarity between the variations in geomagnetic aa-index in the intervals 1844–1867 and 1984–2007 is also found. Moreover, the aa-index in these intervals have the same best fit lines (the polynomials of the fourth order) with close positions of the extrema. The extrema of the best fit line for the aa-index in the interval 1906–1928 which corresponds to the first half of the ordered, trefoil interval of the SIM have the opposite positions to them. The correlation coefficient between the aa-indices in the interval 1844–1866 and in the interval 1984–2006 is 0.61. In contrast, the correlation coefficient between the aa-indices in the interval 1844–1866 and in the interval 1906–1928 is ?0.43. Cautious predictions have been made: the author believes that the cycles 24–26 will be a repeat of cycles 11–13, i.e. they could have heights around 140 (100), 65 and 85, they will have lengths of 11.7, 10.7 and 12.1 years. The maxima of the cycles should occur in 2010, 2023 and 2033, the minima in 2007, 2018, 2029 and 2041. Up to 2045, the aa-index could repeat its values for the interval 1868–1905. The results indicate that solar and geomagnetic activities are non random processes. If these predictions may come true, then further evidence of the primary role of the SIM in solar variability is established.  相似文献   

2.
We extend the correlation analysis of solar signals and the North Atlantic Oscillation (NAO) back in time by using the aa index (since 1868) and the PC index (since 1948) as a proxy of the solar wind energy imparted to the magnetosphere. Prior to the 1940s the records of the NAO and the aa index were not closely connected, while after the 1940s their rhythms matched. We compare two distinctive periods with recent results on the long-scale reconstruction of solar activity. The shift in the NAO–aa interconnection can provide the explanation of a significant increase of solar activity after the 1940s. A strengthening of the interplanetary magnetic field leads to more intensive variations of the high-latitude ionospheric electric field that influences the atmospheric circulation.  相似文献   

3.
Pulsating auroras were recorded at Bedford, Massachusetts, cgm lat. 55.4°, 24 March 1969 during a worldwide magnetic storm, the only known published observations of pulsating auroras at such low magnetic latitudes. Spectral density analysis of several minutes of 5577A pulsations indicated a dominant period of 7.2 sec at 0300 EST. The following characteristics were noted: (1) occurrence during a negative bay in H; (2) location toward the equatorial boundary of the auroral display; (3) occurred a few hours after local midnight; (4) characteristic period of 6–10 sec; (5) quasi-sinusoidal or superposition of sinusoids rather than isolated pulses; (6) modulation of the background intensity by 15–30 per cent. These characteristics have previously been observed by others in pulsating auroras in the auroral oval. Other mid-latitude geophysical measurements at the same time show similarities to typical auroral oval behavior. These observations indicate that the auroral oval expanded during the worldwide magnetic storm until the boundary of the auroral oval was near cgm latitude 55°. If this observation of one mid-latitude pulsating aurora is in general valid, then the agreement of the characteristic period of pulsating auroras when the oval has expanded to mid-latitudes with the period of pulsating auroras when the oval is not expanded should be useful in distinguishing between proposed source mechanisms for these pulsating auroras.  相似文献   

4.
By combining continuous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationship with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships — simultaneous ground-based observations of the midday and evening-midnight sectors of the auroral oval—is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMFB Z is repeated occurrence of certain short-lived auroral structures which seem to move in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity, and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

5.
Using two mathematical methods based on the wavelet transform and nonlinear dynamics, we reconstructed the behavior of the aa-index of geomagnetic activity in the past. Two versions of the series are provided: for the last 400 years and on an almost 1000-year time scale. We consider typical values of the aa-index at grandiose extrema of solar activity. The same high level of geomagnetic activity as that observed in the last 50 years is shown to have also taken place in the early 12th and late 14th centuries. We suggest an extended time series of A-indices of the large-scale solar magnetic field. On the 400-year time scale, we confirmed that the large-scale magnetic field develops earlier than the magnetic fields of active regions. Ohl’s prediction method was verified on the same time scale.  相似文献   

6.
We study the evolution of the longitudinal asymmetry in solar activity through the wave packet technique applied to the period domain of 25 – 31 days (centered at the 27-day solar rotation period) for the sunspot number and geomagnetic aa index. We observe the occurrence of alternating smaller and larger amplitudes of the 11-year cycle, resulting in a 22-year periodicity in the 27-day signal. The evolution of the 22-year cycle shows a change of regime around the year 1912 when the 22-year period disappears from the sunspot number series and appears in the aa index. Other changes, such as a change in the correlation between solar and geomagnetic activity, took place at the same time. Splitting the 27-day frequency domain of aa index shows an 11-year cycle for higher frequencies and a pure22-year cycle for lower frequencies, which we attribute to higher latitude coronal holes. This evidence is particularly clear after 1940, which is another benchmark in the evolution of the aa index. We discuss briefly the mechanisms that could account for the observed features of the 22-year cycle evolution.  相似文献   

7.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

8.
In the previous study (Dabas et al. in Solar Phys. 250, 171, 2008), to predict the maximum sunspot number of the current solar cycle 24 based on the geomagnetic activity of the preceding sunspot minimum, the Ap index was used which is available from the last six to seven solar cycles. Since a longer series of the aa index is available for more than the last 10 – 12 cycles, the present study utilizes aa to validate the earlier prediction. Based on the same methodology, the disturbance index (DI), which is the 12-month moving average of the number of disturbed days (aa≥50), is computed at thirteen selected times (called variate blocks 1,2,…,13; each of them in six-month duration) during the declining portion of the ongoing sunspot cycle. Then its correlation with the maximum sunspot number of the following cycle is evaluated. As in the case of Ap, variate block 9, which occurs exactly 48 months after the current cycle maximum, gives the best correlation (R=0.96) with a minimum standard error of estimation (SEE) of ± 9. As applied to cycle 24, the aa index as precursor yields the maximum sunspot number of about 120±16 (the 90% prediction interval), which is within the 90% prediction interval of the earlier prediction (124±23 using Ap). Furthermore, the same method is applied to an expanded range of cycles 11 – 23, and once again variate block 9 gives the best correlation (R=0.95) with a minimum SEE of ± 13. The relation yields the modified maximum amplitude for cycle 24 of about 131±20, which is also close to our earlier prediction and is likely to occur at about 43±4 months after its minimum (December 2008), probably in July 2012 (± 4 months).  相似文献   

9.
We studied the dependence of the A p -index describing the geomagnetic disturbance on the Moon’s phase. We processed available data for cycles 20–23 of the solar activity by the epoch super-position method. We discovered that, in the declining branch of the solar cycle, the highest values of the A p -index relative to an average value are observed near new moon. The difference of the A p -index values for new moon and full moon is approximately 18%. In the branch of increase and maximum of the solar cycle, we observed minimum values of the A p -index during several days before full moon, and maximum values of the A p -index take place during several days after full moon. The conclusion follows from this that the mechanism of the Moon’s effect on the earth’s magnetosphere is different essentially for intervals near new moon and full moon.  相似文献   

10.
R. P. Kane 《Solar physics》2007,243(2):205-217
For many purposes (e.g., satellite drag, operation of power grids on Earth, and satellite communication systems), predictions of the strength of a solar cycle are needed. Predictions are made by using different methods, depending upon the characteristics of sunspot cycles. However, the method most successful seems to be the precursor method by Ohl and his group, in which the geomagnetic activity in the declining phase of a sunspot cycle is found to be well correlated with the sunspot maximum of the next cycle. In the present communication, the method is illustrated by plotting the 12-month running means aa(min ) of the geomagnetic disturbance index aa near sunspot minimum versus the 12-month running means of the sunspot number Rz near sunspot maximum [aa(min ) versus Rz(max )], using data for sunspot cycles 9 – 18 to predict the Rz(max ) of cycle 19, using data for cycles 9 – 19 to predict Rz(max ) of cycle 20, and so on, and finally using data for cycles 9 – 23 to predict Rz(max ) of cycle 24, which is expected to occur in 2011 – 2012. The correlations were good (∼+0.90) and our preliminary predicted Rz(max ) for cycle 24 is 142±24, though this can be regarded as an upper limit, since there are indications that solar minimum may occur as late as March 2008. (Some workers have reported that the aa values before 1957 would have an error of 3 nT; if true, the revised estimate would be 124±26.) This result of the precursor method is compared with several other predictions of cycle 24, which are in a very wide range (50 – 200), so that whatever may be the final observed value, some method or other will be discredited, as happened in the case of cycle 23.  相似文献   

11.
The behaviour of the polar auroras in the dark part of the auroral oval during the solar flares has been examined. For the analysis 29 solar flares during spring and autumn periods when a part of the polar cap was sunlit were selected. It has been found that a sharp decreasing of the auroral arc luminosity occurred just after the solar flare onsets. Auroral arcs broke up into patches and in most cases disappeared in 2–3 min. Bright discrete auroras appeared again as a rule close to the maximum phase of the solar flares. The duration of polar aurora effects was typically from 4 to 13 min with median value of about 8 min. These effects have been observed inside the interval 18.00-04.00 M.L.T. during periods both of magnetic quiet and disturbance.For the large set of data magnetic field variations in the sunlit polar cap after the solar flare onset have been investigated. A simple model of the auroral processes for the qualitative explanation of the observed phenomenon has been suggested.  相似文献   

12.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

13.
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.  相似文献   

14.
Based on the analysis of the microwave observations at the frequency range of 2.60 – 3.80 GHz in the solar X1.3 flare event observed at the Solar Broadband RadioSpectrometer in Huairou (SBRS/Huairou) on 30 July 2005, an interesting reversed drifting quasi-periodic pulsating structure (R-DPS) is confirmed. The R-DPS is mainly composed of two drifting pulsating components: one is a relatively slow very short-period pulsation (VSP) with a period of about 130 – 170 ms, the other is a relatively fast VSP with a period of about 70 – 80 ms. The R-DPS has a weak left-handed circular polarization. Based on the synthetic investigations of Reuven Ramaty High Energy Solar Spectroscopic Imaging (RHESSI) hard X-ray, Geostationary Operational Environmental Satellite (GOES) soft X-ray observations, and magnetic field extrapolation, we suggest that the R-DPS possibly reflects flaring dynamic processes of the emission source regions.  相似文献   

15.
Makarov  V.I.  Tlatov  A.G.  CALLEBaUT  D.K.  Obridko  V.N.  Shelting  B.D. 《Solar physics》2001,198(2):409-421
Hα magnetic synoptic charts of the Sun are processed for 1915–1999 and the spherical harmonics are calculated. It is shown that the polarity distribution of the magnetic field on Hα charts is similar to the polarity distribution of the Stanford magnetic field observations during 1975–1999. The index of activity of the large-scale magnetic field A(t), representing the sum of the intensities of dipole and octupole components, is introduced. It is shown that the cycle of the large-scale magnetic field of the Sun precedes on the average by 5.5 years the sunspot activity cycle, W(t). This means that the weak large-scale magnetic fields of the Sun do not result from decay and diffusion of strong fields from active regions as it is supposed in all modern theories of the solar cycle. On the basis of the new data the intensity of the current solar cycle 23 is predicted and some aspects of the theory of the solar cycle are discussed.  相似文献   

16.
A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.  相似文献   

17.
A program of observations of Jupiter's H+3auroras was conducted during the first 4 months of 1992, a period that spanned the Ulysses encounter. Daily variations of auroral intensity are small in magnitude (∼20%) and well correlated with variations in the solar wind ram pressure arriving at Jupiter. A much larger (factor of 3) time variation is observed to occur on a time scale of approximately 2 months. During the first 2 months of observation, the inferred total intrinsic intensity of the northern aurora exceeded that of the southern aurora by a factor of 2. Throughout the latter 2 months, characterized by less intense auroral activity, the intensity of the northern aurora was comparable to that of the southern aurora.  相似文献   

18.
Ivanov  E.V.  Obridko  V.N. 《Solar physics》2002,206(1):1-19
Digitized synoptic charts of photospheric magnetic fields were analyzed for the past 4 incomplete solar activity cycles (1969–2000). The zonal structure and cyclic evolution of large-scale solar magnetic fields were investigated using the calculated values of the radial B r, |B r|, meridional B θ, |B θ|, and azimuthal B φ, |B φ| components of the solar magnetic field averaged over a Carrington rotation (CR). The time–latitude diagrams of all 6 parameters and their correlation analysis clearly reveal a zonal structure and two types of the meridional poleward drift of magnetic fields with the characteristic times of travel from the equator to the poles equal to ∼16–18 and ∼2–3 years. A conclusion is made that we observe two different processes of reorganization of magnetic fields in the Sun that are related to generation of magnetic fields and their subsequent redistribution in the process of emergence from the field generation region to the solar surface. Redistribution is supposed to be caused by some external forces (presumably, by sub-surface plasma flows in the convection zone).  相似文献   

19.
We study variations of the lifetimes of high- solar p modes in the quiet and active Sun with the solar activity cycle. The lifetimes in the degree range =300 – 600 and ν=2.5 – 4.5 mHz were computed from SOHO/MDI data in an area including active regions and quiet Sun using the time – distance technique. We applied our analysis to the data in four different phases of solar activity: 1996 (at minimum), 1998 (rising phase), 2000 (at maximum), and 2003 (declining phase). The results from the area with active regions show that the lifetime decreases as activity increases. The maximal lifetime variations are between solar minimum in 1996 and maximum in 2000; the relative variation averaged over all values and frequencies is a decrease of about 13%. The lifetime reductions relative to 1996 are about 7% in 1998 and about 10% in 2003. The lifetime computed in the quiet region still decreases with solar activity, although the decrease is smaller. On average, relative to 1996, the lifetime decrease is about 4% in 1998, 10% in 2000, and 8% in 2003. Thus, measured lifetime increases when regions of high magnetic activity are avoided. Moreover, the lifetime computed in quiet regions also shows variations with the activity cycle.  相似文献   

20.
In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a “comprehensive” catalog of these events. In this paper, we present a revised and updated catalog of the ≈300 near-Earth ICMEs in 1996 – 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied “magnetic clouds”, with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号