首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts and associated floodplain is described. Sediment and water supply are defined at the upstream entry point, and base level is defined at the downstream edge of the model. Sediment and water are transported through a network of channels according to the diffusion equation, and each channel has a channel belt with a width that increases in time. The network of channels evolves as a result of channel bifurcation and abandonment (avulsion). The timing and location of channel bifurcation is controlled stochastically as a function of the cross‐valley slope of the floodplain adjacent to the channel belt relative to the down‐valley slope, and of annual flood discharge. A bifurcation develops into an avulsion when the discharge of one of the distributaries falls below a threshold value. The floodplain aggradation rate decreases with distance from the nearest active channel belt. Channel‐belt degradation results in floodplain incision. Extrinsic (extrabasinal, allogenic) and intrinsic (intrabasinal, autogenic) controls on floodplain dynamics and alluvial architecture were modelled, and sequence stratigraphy models were assessed. Input parameters were chosen based on data from the Rhine–Meuse delta. To examine how the model responds to extrinsic controls, the model was run under conditions of changing base level and increasing sediment supply. Rises and falls in base level and increases in sediment supply occurred over 10 000 years. Rising base level caused a wave of aggradation to move up‐valley, until aggradation occurred over the entire valley. Frequency of bifurcations and avulsions increased with rate of base‐level rise and aggradation rate. Channel‐belt width varied with water discharge and the lifespan of the channel belt. Wide, connected channel belts (and high channel‐deposit proportion) occurred around the upstream inflow point because of their high discharge and longevity. Less connected, smaller channel belts occurred further down‐valley. Such alluvial behaviour and architecture is also found in the Rhine–Meuse delta. During base‐level fall, valley erosion occurred, and the incised valley contained a single wide channel belt. During subsequent base‐level rise, a wave of aggradation moved up‐valley, filling the incised valley. Bifurcation and avulsion sites progressively moved upstream. Relatively thin, narrow channel belts bordered and cut into the valley fill. These results differ substantially from existing sequence stratigraphy models. The increase in sediment supply from upstream resulted in an alluvial fan. Most bifurcations and avulsions occurred at the fan apex (nodal avulsion), and channel belts were the widest and the thickest here (giving high channel‐deposit proportion) due to their high discharge and longevity. The width and thickness of channel belts decreased down‐valley due to decreased discharge, longevity and aggradation rate. This behaviour occurs in modern alluvial fans. Intrinsic controls also affect floodplain dynamics and alluvial architecture. Variation of aggradation rate, bifurcation frequency and number of coexisting channel belts occurred over periods of 500 to 2000 years, compared with 10 000 years for extrinsic controls. This variation is partly related to local aggradation and degradation of channel belts around bifurcation points. Channel belts were preferentially clustered near floodplain margins, because of low floodplain aggradation rate and topography there.  相似文献   

2.
The Hennisdijk fluvial system in the central Rhine-Meuse delta is an abandoned Rhine distributary that was active on a wide floodplain from 3800 to 3000 years BP . Cross-sectional geometry, lithological characteristics and planform patterns of the channel-belt deposits indicate lateral migration of the Hennisdijk palaeochannel. Channel-belt deposits are around 10 m thick and 200–400 m wide. A gravelly facies near the base of the channel-belt deposits represents channel-lag and lower point-bar deposits. The axis of the channel belt is dominated by a sandy facies (medium and coarse sand), showing an overall fining upward trend with multiple cycles. This facies is interpreted as lower and middle point-bar deposits. The sandy facies is capped by a muddy facies, which is 1–2 m thick near the axis of the channel belt and thickens to 5–6 m along the margins. It laterally interfingers with the sandy facies that occurs near the channel-belt axis, but it has sharp, erosive outer contacts marking the edges of the channel belt. The muddy facies comprises inclined heterolithic stratification (IHS) (fine/medium sand–mud couplets) in its upper part. The relatively thin muddy facies with IHS that occurs near the channel-belt axis is interpreted as upper point-bar deposits with lateral accretion surfaces, formed under marine influence. Along the margins of the channel belt the muddy facies consists of thick, fairly homogeneous, successions of mud with variable sand content, and fine sand. Based on facies geometry and position, this part of the muddy facies is interpreted as counterpoint deposits, formed along the upstream limb of the concave bank of a channel bend. Counterpoint accretion seems to have been associated with the confined nature of the channel belt, which was the result of low stream power (4·5–7·8 W m−2, based on reconstructions of palaeodischarge and channel slope) and cohesive bank material, i.e. clayey floodbasin deposits with intercalated peat beds occurring next to the channel belt. In the literature, counterpoint accretion is mostly reported from alluvial valleys, where meandering is confined by limited floodplain width, whereas muddy lateral accretion surfaces are commonly reported from much wider marine-influenced floodplains. The present study shows juxtaposition of both forms of muddy channel deposits in a low-energy, wide coastal plain setting, where preservation potential is considerable.  相似文献   

3.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   

4.
5.
Excellent exposures of thick, multistorey, fluvial deposits from the deltaic Atane Formation on south‐east Nuussuaq, central West Greenland, show the architecture of up to 100 m thick continuously aggrading fluvial depositional complexes. The succession comprises vertically stacked channel belt sandstones separated by thin floodplain deposits, with little to no incision between storeys. Architectural elements and palaeocurrent patterns of channel deposits indicate deposition in large, relatively stable, low‐sinuosity rivers, probably located within an incised valley. Gradual transitions from channel to floodplain deposits accompanied by a gradual change from floodplain to spillover sand suggest avulsion on the floodplain as a possible mechanism for the vertically alternating channel and floodplain deposits. Despite its relative proximity to contemporaneous sea‐level (ca 35 km upstream from the palaeo‐shoreline) the depositional complex is entirely non‐marine. The aggrading nature of the deposits suggests a continuously rising base level coupled with a high and steady sediment supply. Vertical alternations between floodplain and channel deposits may be forced by subtle interruptions in this balance or autocyclic mechanisms on the floodplain. This study provides an example of aggrading lowstand/non‐marine transgressive systems tract deposits.  相似文献   

6.
Element analysis of modern-day floodplains provides a framework for characterizing associations amongst depositional forms, the processes responsible for them and their local depositional environment. From interpretation of the spatial association of elements, mechanisms of floodplain evolution can be analysed. The Squamish River, in southwestern British Columbia, is a high-energy, gravel-based river, which exhibits a distinct downstream gradation in channel planform type. The floodplain sedimentology of this river is evaluated using an element approach. Five elements, defined on the basis of their morphological outline, position within sediment sequences and sedimentological character, describe the floodplain sedimentology: (i) top-stratum, (ii) chute channel; (iii) ridge; (iv) bar platform; (v) basal channel gravels. The sedimentological composition of each element is described. Each of these units relates directly to morphostratigraphic units which make up contemporary bars of the Squamish River. Associations among facies defined at the bedform scale, morphostratigraphic units on bar surfaces and elemental floodplain features are described and explained. The vertical stacking arrangement of elements is analysed in trenches (dug perpendicular to the main channel) and in bank exposures. Two elemental sedimentology models are proposed. In the first model, bar platform sands are discontinuous above basal channel gravels. Chute channel, ridge and proximal topstratum elements form thick sequences above. The second model is characterized by sequences in which distal top-stratum deposits are observed. In these instances, bar platform sands are better preserved beneath the distal top-stratum element, with proximal top-stratum elements above. The applicability of these models is determined primarily by position on the floodplain. Chute channel reworking of floodplain sediments and replacement by top-stratum elements is the dominant process marginal to contemporary bars. Sites in which channel avulsion has resulted in preservation of distal top-stratum deposits in the midsequence of the present-day channel banks determine the occurrence of the second model. Although channel planform style changes down-valley in the study reach from braided to meandering, these two models apply in each reach. It is concluded that processes operative at the element scale, rather than the channel planform scale, determine floodplain sedimentology.  相似文献   

7.
Stratigraphically limited intervals from the Lower Eocene Willwood Formation contain laterally extensive carbonaceous shales and ribbon sandstone networks associated with channel avulsion. We present data from one such interval that documents the avulsion sequence. Vertical sections measured along the outcrop of this interval are similar and comprise a basal carbonaceous shale overlain by fine-grained deposits on which weakly developed, hydromorphic paleosols formed. The paleosols enclose and are locally incised by ribbon sandstones, some of which cut down to and partly through the carbonaceous shale. The ribbons have width/thickness ratios between 3 and 13. Some ribbons cluster at a particular stratigraphic level, which, together with paleocurrent trends, suggests that they formed channel networks. Sections are capped by yellow-brown paleosols showing moderate pedogenic development. We suggest that the carbonaceous shales developed in low-lying topogeneous swamps in distal portions of the floodplain far from the trunk channel. Such a location set limits on the sediment that they received. The mudrocks with weakly developed paleosols and associated ribbon sandstones are interpreted as crevasse-splay complexes resulting from avulsion of the trunk river. The ribbon sandstones represent ancient feeder channels of the avulsion complex. The rapid influx of avulsion deposits appears to have been crucial to preserving the organic material, and this study reveals an important and as yet uncharacterized link between trunk channel processes and the accumulation of organic-rich deposits in distal alluvial swamps. Similar deposits are found in other stratigraphic units in the Rocky Mountain region, and the development of these and other organic-rich deposits should be reassessed in terms of channel avulsion.  相似文献   

8.
Field surveys and radiocarbon dating of buried logjams in the floodplain of an old-growth forest river demonstrate the formation of erosion-resistant “hard points” on the floodplain of the Queets River, Washington. These hard points provide refugia for development of old-growth forest patches in frequently disturbed riparian environments dominated by immature forest. Our surveys show that local bed aggradation associated with logjams not only influences channel patterns and profiles but leads to development of a patchwork of elevated landforms that can coalesce to form portions of the valley bottom with substantial (i.e., 1 to >4 m) relief above the bankfull elevation. In addition, logjam-formed hard points promote channel avulsion, anastomosing morphology, and growth of mature patches of floodplain forest that, in turn, provide large logs needed to form more logjam-formed hard points. Hence, our findings substantiate the potential for a feedback mechanism through which hard points sustain complex channel morphology and a patchwork floodplain composed of variable-elevation surfaces. Conversely, such a feedback further implies that major changes in riparian forest characteristics associated with land use can lead to dramatic simplification in channel and floodplain morphology.  相似文献   

9.
Bristow  Skelly  & Ethridge 《Sedimentology》1999,46(6):1029-1047
Base-level rise of ≈2·35 m on the Niobrara River has resulted in aggradation of the channel belt and a recent avulsion. Overbank areas have become flooded by rising groundwaters, and more than eight crevasse splays have formed between 1993 and 1997. Two crevasse splays, situated on the west and east sides of the Niobrara, have been studied using ground-penetrating radar (GPR), shallow boreholes and topographic surveys. The vibracores and GPR profiles provide a nearly three-dimensional view of the architecture of crevasse splay deposits. The east splay was initiated in the winter of 1993/94 and has expanded to cover an area ≈200 m by 1000 m, with sediment up to 2·5 m thick. The west splay, which was initiated by the opening of a crevasse channel through a levee in the autumn of 1995, covers an area ≈150 m by 250 m, with up to 1·2 m of sand deposited in a single year. The Niobrara splays are sand dominated and characterized by bedload deposition within channels, 5–30 m wide and 0·5–2 m deep, with the development of slipfaces where splays prograde into standing bodies of water. Sedimentary structures in cores include horizontal lamination, ripple lamination and sets of cross-stratification. There is a slight tendency for splays to coarsen up, but individual beds within the splays often fine up. The abundance of crevasse splays on the Niobrara River contrasts with other braided river floodplains. In the Niobrara, crevasse splay formation followed aggradation within the channel belt, which occurred in response to base-level rise. The link between crevasse splays, channel aggradation and base-level rise has important implications for the interpretation of ancient braided river and floodplain sequences. It is suggested that crevasse splay deposits should be an important component of aggrading fluvial sediments and, hence, should be preserved within the rock record. In this case, the aggradation and crevassing have been tied to a rise in base-level elevation, and it is suggested that similar deposits should be preserved where braided rivers are affected by base-level rise, for instance during transgression and filling of palaeovalleys.  相似文献   

10.
《Quaternary Science Reviews》2003,22(10-13):1105-1110
The lower Mississippi valley (LMV) contains many large braided channel belts that are preserved west of the Holocene floodplain. Previous efforts to establish geochronologic control on channel-belt construction have been hindered by the lack of organic material for radiocarbon dating. Luminescence techniques provide a burial date for the sediment itself and may prove useful in this context. Samples from three channel belts in the northern LMV were analyzed using the single aliquot-regenerative technique on 90–125 μm quartz. Optical ages (19.7–17.8, 16.1–15.0 and 12.5–12.1 ka) are consistent with geomorphic relationships and indicate that channel belts were formed in the late Pleistocene under glacial conditions. These optical ages provide the first detailed chronology of LMV channel-belt formation and are the first step towards developing a chronology for the entire LMV.  相似文献   

11.
Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well‐defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of Milankovitch‐sale orbital forcing in alluvial stratigraphy would provide unprecedented age control in terrestrial deposits, and also exploit models of allogenic forcing enabling more rigorous testing of allocyclic and autocyclic controls. The Willwood Formation of the Bighorn Basin is a lower Eocene fluvial unit distinctive for its thick sequence of laterally extensive lithological cycles on a scale of 4 to 10 m. Intervals of red palaeosols that formed on overbank mudstones are related to periods of relative channel stability when gradients between channel belts and floodplains were low. The intervening drab, heterolithic intervals with weak palaeosol development are attributed to episodes of channel avulsion that occurred when channels became super‐elevated above the floodplain. In the Deer Creek Amphitheater section in the McCullough Peaks area, these overbank and avulsion deposits alternate with a dominant cycle thickness of ca 7·1 m. Using integrated stratigraphic age constraints, this cyclicity has an estimated period of ca 21·6 kyr, which is in the range of the period of precession climate cycles in the early Eocene. Previous analyses of three older and younger sections in the Bighorn Basin showed a similar 7 to 8 m spacing of red palaeosol clusters with an estimated duration close to the precession period. Intervals of floodplain stability alternating with episodes of large‐scale reorganization of the fluvial system could be entirely autogenic; however, the remarkable regularity and the match in time scales documented here indicate that these alternations were probably paced by allogenic, astronomically forced climate change.  相似文献   

12.
Deposits of the ancestral Rio Grande (aRG) belonging to the Camp Rice Formation are preserved and exposed in the uplifted southern portion of the Robledo Mountains horst of the southern Rio Grande rift. The sediments are dated palaeomagnetically to the Gauss chron (upper Pliocene). The lower part of the succession lies in a newly discovered palaeocanyon cut into underlying Eocene rocks whose margins are progressively onlapped by the upper part. Detailed sedimentological studies reveal the presence of numerous river channel and floodplain lithofacies, indicative of varied deposition in channel bar complexes of low‐sinuosity, pebbly sandbed channels that traversed generally dryland floodplains and shifted in and out of the study area five times over the 1 Myr or so recorded by the succession. Notable discoveries in the deposits are: (1) complexes of initial avulsion breakout channels at the base of major sandstone storeys; (2) common low‐angle bedsets ascribed to deposition over low‐angle dunes in active channels; (3) palaeocanyon floodplain environments with evidence of fluctuating near‐surface water tables. Sand‐body architecture is generally multistorey, with palaeocurrents indicative of funnelling of initial avulsive and main fluvial discharge from the neighbouring Mesilla basin through a narrow topographic gap into the palaeocanyon and out over the study area. An avulsion node was evidently located at the stationary southern tip to the East Robledo fault during Gauss times, with aRG channels to the north flowing close to the fault and preventing fan progradation. Subsequent Matuyama growth of the fault caused (1) deposition to cease as the whole succession was uplifted in its footwall, (2) development of a thick petrocalcic horizon, and (3) fan progradation into the Mesilla basin. Parameters for the whole aRG fluvial system are estimated as: active single channels 2 m deep and 25 m wide; valley slope 0·24–0·065°; maximum mean aggradation rate 0·05 mm year–1; major channel belt avulsion interval 200 ky; individual channel recurrence interval 100 ky; minimum bankfull mean flow velocity 1·54 m s–1, minimum single‐channel discharge 77 m3 s–1, bed shear stress 22·3 N m–2; and stream power 34·3 W m–2.  相似文献   

13.
The mode of channel‐bend transformation (i.e. expansion, translation, rotation or a combination thereof) has a direct bearing on the dimensions, shape, bedding architecture and connectivity of point‐bar sandstone bodies within a fluvial meander belt, but is generally difficult to recognize in vertical outcrops. This study demonstrates how the bend transformation mode and relative rate of channel‐floor aggradation can be deciphered from longitudinal outcrop sections aligned parallel to the meander‐belt axis, as a crucial methodological aid to the reconstruction of ancient fluvial systems and the development of outcrop analogue models for fluvial petroleum reservoirs. The study focuses on single‐storey and multi‐storey fluvial meander‐belt sandstone bodies in the Palaeogene piggyback Boyabat Basin of north‐central Turkey. The sandstone bodies are several hundred metres wide, 5 to 40 m thick and encased in muddy floodplain deposits. The individual channel‐belt storeys are 5 to 9 m thick and their transverse sections show lateral‐accretion bed packages representing point bars. Point bars in longitudinal sections are recognizable as broad mounds whose parts with downstream‐inclined, subhorizontal and upstream‐inclined bedding represent, respectively, the bar downstream, central and upstream parts. The inter‐bar channel thalweg is recognizable as the transition zone between adjacent point‐bar bedsets with opposing dip directions into or out of the outcrop section. The diverging or converging adjacent thalweg trajectories, or a trajectory migrating in up‐valley direction, indicate point‐bar broadening and hence channel‐bend expansion. A concurrent down‐valley migration of adjacent trajectories indicates channel‐bend translation. Bend rotation is recognizable from the replacement of a depositional riffle by an erosional pool zone or vice versa along the thalweg trajectory. The steepness of the thalweg trajectory reflects the relative rate of channel‐floor aggradation. This study discusses further how the late‐stage foreland tectonics, with its alternating pulses of uplift and subsidence and a progressive narrowing of the basin, has forced aggradation of fluvial channels and caused vertical stacking of meander belts.  相似文献   

14.
Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to reconstruction of palaeochannel dimensions and to flow modelling for hydrocarbon exploration. It is therefore crucial to understand the suite of processes that form and transfer these surfaces into the fluvial sedimentary record. Here, the numerical model ‘NAYS2D’ is used to simulate a highly sinuous meandering river with synthetic stratigraphic architectures that can be compared directly to the sedimentary record. Model results highlight the importance of spatial and temporal variations in channel depth and migration rate to the generation of channel and bar deposits. Addition of net uniform bed aggradation (due to excess sediment input) allows quantification of the preservation of meander morphology for a wide range of depositional conditions. The authors find that the effect of vertical variation in scouring due to channel migration is generally orders of magnitude larger than the effect of bed aggradation, which explains the limited impact bed aggradation has on preservation of meander morphology. Moreover, lateral differences in stratigraphy within the meander belt are much larger than the stratigraphic imprint of bed aggradation. Repeatedly produced alternations of point bar growth followed by cut‐off result in a vertical trend in channel and scour feature stacking. Importantly, this vertical stacking trend differs laterally within the meander belt. In the centre of the meander belt, the high reworking intensity results in many bounding surfaces and disturbed deposits. Closer to the margins, reworking is infrequent and thick deposits with a limited number of bounding surfaces are preserved. These marginal areas therefore have the highest preservation potential for complete channel deposits and are thus best suited for palaeochannel reconstruction.  相似文献   

15.
The Weichselian Late Pleniglacial, Lateglacial and Holocene fluvial history of the middle Tisza valley in Hungary has been compared with other river systems in West and Central Europe, enabling us to define local and regional forcing factors in fluvial system change. Four Weichselian to Holocene floodplain generations, differing in palaeochannel characteristics and elevation, were defined by geomorphological analysis. Coring transects enabled the construction of the channel geometry and fluvial architecture. Pollen analysis of the fine-grained deposits has determined the vegetation development over time and, for the first time, a bio(chrono)stratigraphic framework for the changes in the fluvial system. Radiocarbon dating has provided an absolute chronology; however, the results are problematic due to the partly reworked character of the organic material in the loamy sediments. During the Late Pleniglacial, aggradation by a braided precursor system of the Tisza and local deflation and dune formation took place in a steppe or open coniferous forest landscape. A channel pattern change from braided to large-scale meandering and gradual incision occurred during the Late Pleniglacial or start of the Lateglacial, due to climate warming and climate-related boreal forest development, leading to lower stream power and lower sediment supply, although bank-full discharges were still high. Alternatively, this fluvial change might reflect the tectonically induced avulsion of the River Tisza into the area. The climatic deterioration of the Younger Dryas Stadial, frequently registered by fluvial system changes along the North Atlantic margin, is not reflected in the middle Tisza valley and meandering persisted. The Lateglacial to Holocene climatic warming resulted in the growth of deciduous forest and channel incision and a prominent terrace scarp developed. The Holocene floodplain was formed by laterally migrating smaller meandering channels reflecting lower bank-full discharges. Intra-Holocene river changes have not been observed.  相似文献   

16.
为揭示黄河口清水沟河道长时段的冲淤演变规律并建立其冲淤计算方法,分析了清水沟1976—2015年的时空冲淤演变过程,采用河床演变的滞后响应模型,考虑河口来水来沙及河道延伸与蚀退的影响,建立了清水沟累计冲淤量的计算方法。结果表明:1976—1980年改道初期清水沟改道点上游先冲后淤,改道点下游淤滩塑槽,淤积量随着下游河道展宽而增加,1980年后改道点上、下游河道冲淤过程趋于一致;受水沙条件等因素影响,1980—1986年清水沟主槽冲刷展宽,之后主槽淤积萎缩;1996年清八改汊和2002年小浪底水库"调水调沙"原型试验以来,河道转淤为冲,2002年后河道冲刷速率随时间指数衰减;河床演变的滞后响应模型可计算清水沟长时段的冲淤过程,该方法可为预测未来清水沟冲淤演变趋势提供科学参考。  相似文献   

17.
The role of tin mining in the society of prehistoric Dartmoor and its impact on the local landscape have long been discussed despite equivocal evidence for prehistoric mine sites. A fluvial geomorphological approach, using floodplain stratigraphy, combined with sediment geochemistry and mineralogy, was employed to identify prehistoric tin mining at the catchment scale. Waste sediment, released during hydraulic mining of alluvial tin deposits, caused downstream floodplain aggradation of sands with a diagnostic signature of elevated Sn concentration within the silt fraction. At a palaeochannel site in the Erme Valley, sediment aggradation buried datable peat deposits. A period of aggradation postdating cal. A.D. 1288–1389 is consistent with the 13th century peak in tin production identified in the documentary record. An earlier phase of aggradation, however, occurred between the 4th and 7th centuries A.D., providing evidence of late Roman or early Post Roman tin mining activity on Dartmoor. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
Fluvial processes have the potential to obscure, expose, or even destroy portions of the archaeological record. Floodplain aggradation can bury and hide archaeological features, whereas actively migrating channels can erode them. The archaeological record preserved in the subsurface of a fluvial system is potentially fragmented and is three‐dimensionally complex, especially when the system has been subjected to successive phases of alluviation and entrenchment. A simulation model is presented to gain insight into the threedimensional subsurface distribution, visibility, and preservation potential of the archaeological record in a meander‐floodplain system as a function of geomorphic history. Simulation results indicate that fluvial cut‐fill cycles can strongly influence the density of archaeological material in the subsurface. Thus, interpretation of floodplain habitation based solely upon features visible in the shallow subsurface (through traditional techniques such as aerial photography and geophysical prospection) can be misleading. In the examples, the loss of archaeological record by channel migration ranges between 45% and 90% over 12,000 years for channel belt‐dominated systems, decreasing to 10 to 30% for rivers where the floodplain width is a multiple of channel belt width. The modeling presented can be used to test excavation strategies in relation to hypothesized scenarios of stratigraphic evolution for archaeological sites. © 2006 Wiley Periodicals, Inc.  相似文献   

19.
Sedimentary rocks of late Mesozoic age exposed at Camp Hill, northern Antarctic Peninsula, are associated with calc-alkaline volcanic rocks. They represent deposition on a fault-controlled floodplain, with marginal alluvial fans, on a volcanic arc. Finely laminated mudstone and occasional graded laminae were deposited from suspension and by density underflow currents, respectively, in small shallow lakes. Thickening- and coarsening-upward sandstone bodies overlying the lake deposits are interpreted as lacustrine deltas of which two types are preserved: (1) Gilbert-type with steep foresets and (2) mouth-bar type which lack steep foresets. Sections through the latter type reveal the presence of sub-environments characteristic of fluvial-dominated marine deltas, i.e. prodelta, distributary mouth-bar and distributary channel. Abandoned mouth-bars resulting from avulsion are recognized. It is suggested that the processes which operated during formation of the mouth-bar deltas resulted from hyperpycnal flow. By contrast, the Gilbert-type delta is thought to be the consequence of a reduced inflow of suspended sediment causing homopycnal flow, and thorough mixing of the river and lake waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号