首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With its amplification simultaneously emerging in cryospheric regions, especially in the Tibetan Plateau, global warming is undoubtedly occurring. In this study, we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014, reported spatiotemporal variability in surface air temperature in the future under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), and further quantified the timing of warming levels (1.5, 2, and 3 °C) in the region. The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well, although with differences across individual models. The projected surface air temperature, by 2099, would warm by 1.9, 3.2, 5.2, and 6.3 °C relative to the reference period (1981–2010), with increasing rates of 0.11, 0.31, 0.53, and 0.70 °C/decade under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios for the period 2015–2099, respectively. Compared with the preindustrial periods (1850–1900), the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5 °C threshold and will break 2 °C in the next decade, but there is still a chance to limit the temperature below 3 °C in this century. Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.  相似文献   

2.
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid‐inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ~15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ~1.5°C was inferred from the chironomid record during this regressive phase. The multi‐proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi‐site approach provided insight into the factors influencing the pollen and isotope records from these small‐scale depressions.  相似文献   

3.
Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (? 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about ? 9°C, much stronger than the ?4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.  相似文献   

4.
Rapid warming in mid-latitude central Asia for the past 100 years   总被引:5,自引:0,他引:5  
Surface air temperature variations during the last 100 years (1901–2003) in mid-latitude central Asia were analyzed using Empirical Orthogonal Functions (EOFs). The results suggest that temperature variations in four major sub-regions, i.e. the eastern monsoonal area, central Asia, the Mongolian Plateau and the Tarim Basin, respectively, are coherent and characterized by a striking warming trend during the last 100 years. The annual mean temperature increasing rates at each sub-region (representative station) are 0.19°C per decade, 0.16°C per decade, 0.23°C per decade and 0.15°C per decade, respectively. The average annual mean temperature increasing rate of the four sub-regions is 0.18°C per decade, with a greater increasing rate in winter (0.21°C per decade). In Asian mid-latitude areas, surface air temperature increased relatively slowly from the 1900s to 1970s, and it has increased rapidly since 1970s. This pattern of temperature variation differs from that in the other areas of China. Notably, there was no obvious warming between the 1920s and 1940s, with temperature fluctuating between warming and cooling trends (e.g. 1920s, 1940s, 1960s, 1980s, 1990s). However, the warming trends are of a greater magnitude and their durations are longer than that of the cooling periods, which leads to an overall warming. The amplitude of temperature variations in the study region is also larger than that in eastern China during different periods.  相似文献   

5.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding the impact of temperature fluctuations on air quality and public health has gained popularity among environmental and epidemiological researchers. Potentially, increase and decrease in temperature between neighboring days have increased the environmental and health risk worldwide. Based on ordinary least-squares method, this paper aims to examine the impact of temperature fluctuations on air quality index (AQI) and respiratory health outcomes (RHOs) during 2008–2012 in Beijing. Our results show that a drop of more than 3 °C results in the increased impact on AQI and RHO in the heating period. At the same time, a raise of more than 3 °C results in the similar increased impact on AQI in the whole study period and heating period. Furthermore, for a raise of more than 3 °C, a larger impact on RHO is observed in the heating period compared with the whole study period. Additionally, an increase in temperature also results in the increased influence of health risk on females during the heating period. Our results suggest that the air quality and public health in Beijing are significantly influenced by decrease and increase in temperature in the heating period.  相似文献   

7.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

8.
Using studies of places where heat waves are common, projected changes in heat waves in Metro Vancouver are assessed from a multi-disciplinary perspective with respect to the potential impacts of the physical change on the people and infrastructure with the intention of being better prepared for future events. Trends in maximum temperature parameters for Metro Vancouver for the past 75 years are generally not statistically significant; however, projections for 2041–2060 and 2081–2100 suggest that the region will experience such events more frequently in the future due to climate change. While Metro Vancouver, British Columbia (BC) generally does not typically experience heat waves it was strongly affected by a major heat event in July 2009, with temperature records being broken at Vancouver (≥31 °C) on the coast and at Abbotsford (≥36 °C) 65-km inland. A lack of sea breeze during this event meant that there was no cooling effect, and land surface temperatures over the downtown area approached 40 °C and excess deaths occurred. Many victims were either in the 65–74 age category, the vulnerable poor, or people with mental health issues. Because these events are rare, many buildings lack air-conditioning, and residents of Metro Vancouver under-anticipate their vulnerability. The costs of health-related impacts outweighed those related to higher electricity usage.  相似文献   

9.
Ikram  Maria  Yan  Zhijun  Liu  Yan  Wu  Dan 《Natural Hazards》2015,77(1):153-175

Understanding the impact of temperature fluctuations on air quality and public health has gained popularity among environmental and epidemiological researchers. Potentially, increase and decrease in temperature between neighboring days have increased the environmental and health risk worldwide. Based on ordinary least-squares method, this paper aims to examine the impact of temperature fluctuations on air quality index (AQI) and respiratory health outcomes (RHOs) during 2008–2012 in Beijing. Our results show that a drop of more than 3 °C results in the increased impact on AQI and RHO in the heating period. At the same time, a raise of more than 3 °C results in the similar increased impact on AQI in the whole study period and heating period. Furthermore, for a raise of more than 3 °C, a larger impact on RHO is observed in the heating period compared with the whole study period. Additionally, an increase in temperature also results in the increased influence of health risk on females during the heating period. Our results suggest that the air quality and public health in Beijing are significantly influenced by decrease and increase in temperature in the heating period.

  相似文献   

10.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

11.
In order to assess the fidelity of coral Sr/Ca for quantitative reconstructions of sea surface temperature variations, we have generated three monthly Sr/Ca time series from Porites corals from the lagoon of Peros Banhos (71°E, 5°S, Chagos Archipelago). We find that all three coral Sr/Ca time series are well correlated with instrumental records of sea surface temperature (SST) and air temperature. However, the intrinsic variance of the single-core Sr/Ca time series differs from core to core, limiting their use for quantitative estimates of past temperature variations. Averaging the single-core data improves the correlation with instrumental temperature (r > 0.7) and allows accurate estimates of interannual temperature variations (~0.35°C or better). All Sr/Ca time series indicate a shift towards warmer temperatures in the mid-1970s, which coincides with the most recent regime shift in the Pacific Ocean. However, the magnitude of the warming inferred from coral Sr/Ca differs from core to core and ranges from 0.26 to 0.75°C. The composite Sr/Ca record from Peros Banhos clearly captures the major climatic signals in the Indo-Pacific Ocean, i.e. the El Niño–southern oscillation and the Pacific decadal oscillation. Moreover, composite Sr/Ca is highly correlated with tropical mean temperatures (r = 0.7), suggesting that coral Sr/Ca time series from the tropical Indian Ocean will contribute to multi-proxy reconstructions of tropical mean temperatures.  相似文献   

12.
A lake sediment record from the Friedländer Groβe Wiese in northeast Germany was studied to reconstruct summer temperature changes associated with changes in vegetation development during the Weichselian Lateglacial. The record was analysed for pollen, chironomids, and oxygen and carbon isotopes of lake marl. The combination of radiocarbon dates, the presence of the Laacher See Tephra and correlation of lithological and palynological changes with other records from the region indicated that the record encompassed the Allerød to the early Holocene. Pollen assemblages reflect development of birch and later pine‐dominated forests during the Allerød, comparable to other sites in the region. Chironomid‐inferred mean July air temperatures (C‐IT) for this period range between ~14.0 and 14.8°C. A temporary decrease in C‐IT of ~1°C, a negative shift in the isotope records, and a minor decline of birch may correspond to Greenland Interstadial 1b. Even though the transition to the Younger Dryas appears to be affected by reworking and redeposition processes, a drop in C‐IT to ~11.1°C is reconstructed for the later part of the Younger Dryas, while it appears that pine locally persisted in the region. Comparison with a nearby pollen record further indicates a local expansion of wetland grasses during this period. At the transition to the Holocene, C‐IT increased to ~15.7°C, while birch and pine forests re‐expanded. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrothermal processes and the regimes of frozen soil formed in alpine regions with glaciers and lake area are complex and important for ecological environment but have not been studied in Tibet. Based on soil temperature and moisture data from October 2005 to September 2006 collected in the Nam Co lake basin, Tibetan Plateau (TP), those questions were discussed. The mean annual air temperature was −3.4°C with 8 months below 0°C. Air and soil temperature varied between −25.3~13.1°C and −10.3~8.8°C, respectively. Soil moisture variations in the active layer were small with the minimum value of 1.4%, but were influenced greatly by snowmelt, rainfall and evaporation, varying up to 53.8%. The active layer froze later, thawed earlier and was thinner, however, the lower altitude limit of permafrost is higher than that in most areas of TP. The effects of soil moisture (unfrozen water content) on soil temperature, which were estimated through proposed models, were more significant near ground surface than the other layers. The surface soil temperature decreased with snowcover, the effect of cold snow meltwater infiltration on soil thermal conditions was negligible, however, the effect of rainfall infiltration was evident causing thermal disruptions.  相似文献   

14.
Engels, S., Helmens, K. F., Väliranta, M., Brooks, S. J. & Birks, H. J. B. 2010: Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, Vol. 39, pp. 689–704. 10.1111/j.1502‐3885.2010.00163.x. ISSN 0300‐9483. A 25‐m‐long sediment record spanning the time from the Eemian to the Holocene was recovered from Sokli, northeast Finland. This study focuses on a 6‐m‐long sediment interval that is dated to the Early Weichselian period (MIS 5d and 5c) and consists of lacustrine and fluvial deposits. Using chironomid remains, botanical and zoological macroremains as well as sediment lithology, we were able to reconstruct past changes in the environment, including climate. The results indicate that the site was situated on a flood‐plain during the latter stages of MIS 5d (Herning Stadial) and that summer temperatures might have been ~6 °C lower than at present. Although this value should be treated with caution, as numerical analysis shows that it has a very poor fit‐to‐temperature, this low reconstructed value concurs with several other reconstructions that are available from western Europe. During MIS 5c (Brørup interstadial), the depositional environment changed into a lake system, initially with stratification of the water and subsequently with complete mixing and a strong influence of streams. Both chironomid‐based and macroremain‐based temperature inferences indicate past July air temperatures that were significantly higher than at present. This result is in contrast to other (low‐resolution) reconstructions from northern Fennoscandia that indicate past temperatures 6–7 °C lower than present using fossil coleopteran assemblages. However, several central European sites indicate that there was a phase during the Brørup interstadial that was characterized by high summer temperatures, and a comparison between the high‐resolution reconstructions from western Europe and the results presented in this study suggests that the north–south July air temperature gradient between the mid‐ and high‐latitudes was much weaker during the Brørup interstadial than it is at present. High solar insolation values (particularly the obliquity) during the Brørup interstadial might explain the low summer temperature gradient over the European continent. A return to fluvial conditions occurred in the upper parts of the sediment sequence, and, after a brief interval of gyttja deposition under cooling conditions, the site became glaciated during MIS 5b.  相似文献   

15.
Using modern pollen and radiolarian distributions in sediments from the northwest Pacific and seas adjacent to Japan to interpret floral and faunal changes in core RC14-103 (44°02′N, 152°56′E), we recognize two major responses of the biota of eastern Hokkaido and the northwest Pacific to climatic changes since the last interglaciation. Relatively stable glacial environments (~80,000–20,000 yr B.P.) were basically cold and wet (<4°C and ~1000 mm mean annual temperature and precipitation, respectively) with boreal conijers and tundra/park-tundra on Hokkaido, and cool (<16°C) summer and cold (<1.0°C) winter surface temperatures offshore. Contrasting nonglacial environments (~10,000–4000 yr B.P.) were warm and humid (>8°C and >1200 mm mean annual temperature and precipitation, respectively), supporting climax broadleaf deciduous forest with Quercus and Ulmus/Zelkova, with surface waters in the northwest Pacific characterized by warm (>1.5°C) winter and cold (10.4°–14.3°C) summer temperatures. Climatic evidence from RC14-103 shows a high degree of local and regional variation within the context of global climatic change. Correlative ocean and land records provide the detailed input necessary to assess local/regional responses to variations in other key elements (i.e., solar radiation, monsoonal variations) of the northeast Asian climate system.  相似文献   

16.
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to ?25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.  相似文献   

17.
A.L. Washburn 《Earth》1980,15(4):327-402
Permafrost features indicate certain upper limits for annual air and ground temperatures, with the air temperatures being usually the lower because of insulating snow and vegetation. The following features generally imply mean annual air temperatures no higher than those indicated and commonly lower: permafrost itself, large sorted forms of patterned ground, palsas, and rock glaciers, 0°C; ice-wedge polygons and well-developed soil-wedge polygons, ?5°C; open-system pingos, ?2°C; closed system pingos, ?6°C; the implication of cryoplanation terraces remains to be established, with estimates ranging from near 0° to ?12°C.Use of fossil permafrost features as temperature indicators is complicated by problems of correct identification and dating, soil type, and local and regional environmental variables such as precipitation and vegetation. Nevertheless the fact that certain maximum paleotemperatures can be reasonably established in places warrants expanded research in former periglacial areas to evaluate temperature increases to the present. The majority of determinations in Europe, where most of the work has been done to date, indicate minimum air temperature increases of 13°–18° since the maximum of the last glaciation.  相似文献   

18.
气候变化对中国北方荒漠草原植被的影响   总被引:70,自引:2,他引:70  
气候变化对陆地生态系统的影响及其反馈是全球变化研究的焦点之一。利用气候变量实现对遥感植被指数所表示的植被绿度信息的模拟,可以尝试作为表达生物圈过去和未来状态的一种途径。利用1961-2000年的气温、降水和1983-1999年的NOAA/AVHRR资料,分析了中国北方地带性植被类型荒漠草原植被分布区的短尺度气候的年际和季节变化,及其对植被的影响。结果表明,过去40年中该区域年际气候变化表现为增温和降水波动。年NDVI的最大值(NDVImax)可以较好地反映气候的变化,过去17年中NDVImax出现的时间略有提前。综合分析NDVI、植被盖度、NPP、区域蒸散量、土壤含水量及其气候的年际变化,表明增温加剧了土壤干旱化,降水和土壤含水量仍是制约本区植被生长的根本原因。  相似文献   

19.
Simulation of global warming effect on outdoor thermal comfort conditions   总被引:3,自引:2,他引:1  
In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 °C and 5.6 °C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.  相似文献   

20.
Noble gases in three meteoritic samples were examined by stepwise heating, in an attempt to relate peaks in the outgassing curves to specific minerals: NeKrXe in Allende (C3V) and an Allende residue insoluble in HF-HCl, and Xe in Abee (E4). In Allende, chromite and carbon contain most of the trapped Ne (20Ne/22Ne ≈ 8.7) and anomalous Xe enriched in light and heavy isotopes, and release it at ~850°C (bulk meteorite) or 1000°C (residue). Mineral Q, containing most of the trapped Ar, Kr, Xe as well as some Ne (20Ne/22Ne ≈ 10.4), releases its gases mainly between 1200 and 1600°C, well above the release temperatures of organic polymers (300–500°) or amorphous carbon (800–1000°). The high noble-gas release temperature, ready solubility in oxidizing acids, and correlation with acid-soluble Fe and Cr all point to an inorganic rather than carbonaceous nature of Q.All the radiogenic 129Xe is contained in HCl, HF-soluble minerals, and is distributed as follows over the peaks in the release curve: Attend 1000° (75%), 1300° (25%); Abee (data of Hohenberg and Reynolds, 1969) ~850° (15%), 1100° (60%), 1300° (25%). No conclusive identifications of host phases can yet be given; possible candidates are troilite and silicates for Allende, and djerfisherite, troilite and silicates for Abee.Mineral Q strongly absorbs air xenon, and releases some of it only at 800–1000°C. Dilution by air Xe from Q and other minerals may explain why temperature fractions from bulk meteorites often contain less 124–130Xe for a given enrichment in heavy isotopes than does xenon from etched chromitecarbon samples, although chromite-carbon is the source of the anomalous xenon in either case. Air xenon contamination thus is an important source of error in the derivation of fission xenon spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号