首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the effect of radiative heating on the evolution of thin magnetic flux tubes in the solar interior and on the eruption of magnetic flux loops to the surface. Magnetic flux tubes experience radiative heating because (1) the mean temperature gradient in the lower convection zone and the overshoot region deviates substantially from that of radiative equilibrium, and hence there is a non-zero divergence of radiative heat flux; and (2) the magnetic pressure of the flux tube causes a small change of the thermodynamic properties within the tube relative to the surrounding field-free fluid, resulting in an additional divergence of radiative heat flux. Our calculations show that the former constitutes the dominant source of radiative heating experienced by the flux tube.In the overshoot region, the radiative heating is found to cause a quasi-static rising of the toroidal flux tubes with an upward drift velocity 10-3|| cm s-1, where ead < 0 describes the subadiabaticity in the overshoot layer. The upward drift velocity does not depend sensitively on the field strength of the flux tubes. Thus in order to store toroidal flux tubes in the overshoot region for a period comparable to the length of the solar cycle, the magnitude of the subadiabaticity (< 0) in the overshoot region must be as large as 3 × 10–4. We discuss the possibilities for increasing the magnitude of and for reducing the rate of radiative heating of the flux tubes in the overshoot region.Using numerical simulations we study the formation of -shaped emerging loops from toroidal flux tubes in the overshoot region as a result of radiative heating. The initial toroidal tube is assumed to be non-uniform in its thermodynamic properties along the tube and lies at varying depths beneath the base of the convection zone. The tube is initially in a state of neutral buoyancy with the internal density of the tube plasma equal to the local external density. We find from our numerical simulations that such a toroidal tube rises quasi-statically due to radiative heating. The top portion of the nonuniform tube first enters the convection zone and may be brought to an unstable configuration which eventually leads to the eruption of an anchored flux loop to the surface. Assuming reasonable initial parameters, our numerical calculations yield fairly short rise times (2–4 months) for the development of the emerging flux loops. This suggests that radiative heating is an effective way of causing the eruption of magnetic flux loops, leading to the formation of active regions at the surface.The National Solar Observatory is one of the National Optical Astronomy Observatories by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

2.
3.
M. A. Weber  Y. Fan  M. S. Miesch 《Solar physics》2013,287(1-2):239-263
We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1° to 40° in both hemispheres. This article expands upon Weber, Fan, and Miesch (Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy’s Law as in Article 1, and in addition the scatter of tilt angles about the Joy’s Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥?40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy’s Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.  相似文献   

4.
The properties of slender isolated flux tubes, taking into account curvature effects, were investigated by Parker (1975, 1979) and Spruit (1981), and many studies have been made concerning the equilibrium of slender flux tubes in the solar corona. In this paper we use a different approach considering the coronal loop as a part of a circular torus and studying the position of its top when the loop is in equilibrium under toroidal forces. Toroidal forces were considered by Shafranov (1966) for toroidal pinches and the equilibrium can be studied for different values of the toroidal current intensity and external magnetic field. The results show that it is possible to have a coronal flux tube in equilibrium without considering gravity and external magnetic field. Furthermore, the total twist of the flux tube and its variation with the toroidal intensity has been studied.  相似文献   

5.
Twisted magnetic flux tubes are often used to model the filed in coronal loops, and much attention has been given to analysing their stability. Previous astrophysical studies have concentrated on establishing the existence of an instability or determining stability bounds, and little information seems available on the associated eigenvalues, which give crucial information on the energy released. This paper develops methods of determining eigenvalues for infinitely long flux tubes. The most striking feature of the results is that the eigenvalues are always small-of order 10–2 (in dimensionless units) even for the fastest helical kink modes (m=1). The more localized higher-m modes have even smaller eigenvalues. A family of flux tubes with field line twist proportional tor is investigated, and it appears that the most energetic instabilities occur in the Gold-Hoyle tube with uniform twist (=0). Implications of these results are discussed.  相似文献   

6.
A number of independent arguments indicate that the toroidal flux system responsible for the sunspot cycle is stored at the base of the convection zone in the form of flux tubes with field strength close to 105 G. Although the evidence for such strong fields is quite compelling, how such field strength can be reached is still a topic of debate. Flux expulsion by convection should lead to about the equipartition field strength, but the magnetic energy density of a 105-G field is two orders of magnitude larger than the mean kinetic energy density of convective motions. Line stretching by differential rotation (i.e., the “Ω effect” in the classical mean-field dynamo approach) probably plays an important role, but arguments based on energy considerations show that it does not seem feasible that a 105-G field can be produced in this way. An alternative scenario for the intensification of the toroidal flux system in the overshoot layer is related to the explosion of rising, buoyantly unstable magnetic flux tubes, which opens a complementary mechanism for magnetic-field intensification. A parallelism is pointed out with the mechanism of “convective collapse” for the intensification of photospheric magnetic flux tubes up to field strengths well above equipartition; both mechanisms, which are fundamentally thermal processes, are reviewed.  相似文献   

7.
Mean field dynamo theory deals with various mean quantities and does not directly throw any light on the question of existence of flux tubes. We can, however, draw important conclusions about flux tubes in the interior of the Sun by combining additional arguments with the insights gained from solar dynamo solutions. The polar magnetic field of the Sun is of order 10 G, whereas the toroidal magnetic field at the bottom of the convection zone has been estimated to be 100000 G. Simple order-of-magnitude estimates show that the shear in the tachocline is not sufficient to stretch a 10 G mean radial field into a 100000 G mean toroidal field. We argue that the polar field of the Sun must get concentrated into intermittent flux tubes before it is advected to the tachocline. We estimate the strengths and filling factors of these flux tubes. Stretching by shear in the tachocline is then expected to produce a highly intermittent magnetic configuration at the bottom of the convection zone. The meridional flow at the bottom of the convection zone should be able to carry this intermittent magnetic field equatorward, as suggested recently by Nandy and Choudhuri (2002). When a flux tube from the bottom of the convection zone rises to a region of pre-existing poloidal field at the surface, we point out that it picks up a twist in accordance with the observations of current helicities at the solar surface.  相似文献   

8.
We present a combined model for magnetic field generation and transport in cool stars with outer convection zones. The mean toroidal magnetic field, which is generated by a cyclic thin-layer α Ω dynamo at the bottom of the convection zone is taken to determine the emergence probability of magnetic flux tubes in the photosphere. Following the nonlinear rise of the unstable thin flux tubes, emergence latitudes and tilt angles of bipolar magnetic regions are determined. These quantities are put into a surface flux transport model, which simulates the surface evolution of magnetic flux under the effects of large-scale flows and turbulent diffusion. First results are discussed for the case of the Sun and for more rapidly rotating solar-type stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Ideas and models for the appearance of photospheric magnetic structure are confronted with observational data. Some findings are: The magnetic flux emerging in an active region consists of a bundle of flux tubes which were already concentrated before penetrating into the photosphere. A model of a rising bunch of flux tubes joining into a few strands at larger depths describes the coalescence of spots near the leading and following edges of the active region while more flux may surface near the center of the region. There is no observational evidence for appreciable helical twists in the flux bundles.Throughout the region's lifetime the magnetic elements move coherently, the whole magnetic structure rotates faster than the quiet photosphere. In active regions the convective flow at scales larger than the granulation is arrested by the magnetic structure. The long-lived supergranular cells around spots and in the enhanced network in turn determine the decay properties of spots and facular clusters. The modulation of the convective flow by the magnetic structure explains the slow dispersal of faculae.The hierarchy of magnetic elements (sunspots-pores-knots-facular clusters-facular points) may be explained by a set of magnetostatic flux tube models in the top of the convection zone. The underlying assumptions are that the heat flow along the magnetic field is reduced and that there is no heat exchange across the field except by radiation.A tentative model is proposed to account for the amplification, ascent and emergence of intense flux bundles. The assumptions are: (i) the field is concentrated in toroidal bundles by differential rotation, (ii) in the deep convection zone flux bundles are contained by the external turbulent pressure, and (iii) for field strengths up to the equipartition value efficient lateral heat exchange is possible. After a loop has surfaced radiative cooling and subsequent convective downflow reduce the temperature in the top of the flux tubes which then contract to field strengths well above the local equipartition value. There the heat flow is channelled along the field, which creates the conditions for the magnetostatic flux tube models without requiring a blocking of the heat flow somewhere within the tubes.The paper contains a brief review on the evolution of the magnetic field from the emergence in active regions up to the enigmatic disappearance, and a list of topics for further observational investigation.  相似文献   

10.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

11.
Solar coronal loops are observed to be remarkably stable structures. A magnetohydrodynamic stability analysis of a model loop by the energy method suggests that the main reason for stability is the fact that the ends of the loop are anchored in the dense photosphere. In addition to such line-tying, the effect of a radial pressure gradient is incorporated in the analysis.Two-ribbon flares follow the eruption of an active region filament, which may lie along a magnetic flux tube. It is suggested that the eruption is caused by the kink instability, which sets in when the amount of magnetic twist in the flux tube exceeds a critical value. This value depends on the aspect ratio of the loop, the ratio of the plasma to magnetic pressure and the detailed transverse magnetic structure. For a force-free field of uniform twist the critical twist is 3.3, and for other fields it is typically between 2 and 6. Occasionally active region loops may become unstable and give rise to small loop flares, which may also be a result of the kink instability.  相似文献   

12.
A magnetodynamic mechanism for the acceleration of jets in the solar atmosphere (surges, Brueckner's EUV jets, and so on) is proposed, and a 2.5-dimensional MHD simulation is performed to show how this mechanism operates in the situation of the chromosphere-corona region of the solar atmosphere. It is seen from the result of simulation that together with the release of the magnetic twist, e.g., into a reconnected open flux tube, the mass in the high density twisted loop is driven out into the open flux tube due both to the pinch effect progressing with the packet of the magnetic twist into the open flux tube, and to the j × B force at the front of the packet of the unwinding twist in the off-axis part of the tube. The former, the progressing pinch, is accompanied by an accelerated hot blob, while the latter, the unwinding front of the magnetic twist, drives a cool cylindrical flow, both with velocities of the order of the local Alfvén velocity. One of the characteristic properties of the jet in our model is that the jet, consisting of hot core and cool sheath, has a helical velocity field in it, explaining the thus-far unexplained observed feature.The sudden release of the magnetic twist into an open flux tube is most likely to be due to the reconnection between a twisted loop and the open flux tube. The mass is driven out in the relaxation process of the magnetic twist from the twisted loop to the open flux tube.  相似文献   

13.
We discuss the winding of a force-free axisymmetric magnetic field rooted on a heavy conductor onz=0. In quadrupolar symmetry the field expands in the half-spacez>0 and the toroidal flux concentrates on a conical surface. After a mean twist of 208°, the conical layer hosts large toroidal current loops with reversal of the magnetic flux on either side. The evolution of the field structure is described by scale-free static solutionsBr –(p+2), withp taking values between 0 and 2. The large expansion factor of the field structure is suggestive of flaring originating on the solar photosphere.  相似文献   

14.
The stability of magnetic flux tubes embedded vertically in a convection zone is investigated. For thin tubes, the dominant instability is of the convective type, i.e. it is driven by buoyancy forces associated with displacements along the tube. The stability is determined by = 8P/B 2; if c the tube is convectively stable, otherwise it is unstable, where the critical value c depends on the stratification of the convection zone. For a solar convection zone model, c = 1.83, corresponding to a magnetic field strength of 1350 G at the surface of the Sun. It is concluded that the flux tubes making up the small scale field of the Sun are probably hydrodynamically stable.In tubes with > c, the instability is expected to transform the tube either into a state of vanishing surface field strength (in the case of an upward flow), or one with a field strength higher than the original value (if the instability sets in as a downward flow). Following Parker, we suggest that this effect is related to the concentrated nature of the observed solar fields.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

16.
Models of the solar corona which include the effects of hot downflowing material are considered. Temperature-height profiles of the quiet and flaring corona are derived, under the assumptions of hydrostatic equilibrium and that the dominant cause of transition region heating is due to the enthalpy of the downflowing matter. In addition, scaling laws for the lengths of coronal loops are derived. It is found that inclusion of the downward enthalpy flux leads to a loop scaling law for quiet Sun loops which does not differ appreciably from that of Rosner et al. (1978). However, inclusion of the effects of enthalpy flux lead to a scaling law for compact flare loops of L = (3.6 × 109)T infc sup0.55 cm, which predicts much smaller loop sizes than expected from the quiet Sun loop law; these predicted lengths, however, are in agreement with the observed small sizes of compact flare loops.  相似文献   

17.
Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.  相似文献   

18.
We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock-Leighton α-effect to study how helicity varies with latitude and time.  相似文献   

19.
The shape of a magnetic flux tube is investigated when photospheric motion causes small twist at the magnetic footpoints. Using a Fourier-Bessel series expansion, the previous results of Zweibel and Boozer (1985) and Steinolfson and Tajima (1987), when the twist is small, are substantiated. A twisting motion that is restricted to a finite region is investigated. Inside the twisted region, the tube contracts, but in the outer region the field remains straight, except for a slight expansion at the outside of the loop near the footpoints. The amount of twist depends on the radial position and can in fact be larger in the contracted region with the twist decreasing as the tube expands. An axial boundary-layer region is present, as noted by the above authors, through which the field adjusts to the line-tied magnetic footpoint positions. An analysis of the boundary layer shows that the thickness remains constant as the loop-length is increased with the result that the main part of the loop has constant cross-sectional area and can be described by cylindrically-symmetric fields. This new 1-D model predicts the main behaviour of the loop without the need to solve the more complicated 2-D problem directly. It is speculated that the boundary layers will remain even when the twist becomes large and a simple example is presented. A detailed parametric study of different twist profiles shows how the central part of the loop responds.Using the result that the majority of the loop can be described by a constant cross-sectional area, a model for a toroidal loop is presented that models coronal loops in a more realistic manner. The main result from this section is that the coronal loops can only remain in equilibrium if they are confined by an external magnetic field (possibly potential in nature) and not by a gas pressure unless additional physical effects are included.  相似文献   

20.
We have traced the long-term evolution of a non-Hale active region composed of NOAA 9604–9632–9672–9704–9738, which displayed strong transient activity with associated geomagnetic effects from September to December, 2001. By studying the development of spot-group and line-of-sight magnetic field together with the evolution of Hα filaments, the EUV and X-ray corona (TRACE 171 Å, Yohkoh/SXT), we have found that the magnetic structure of the active region exhibited a continuous clockwise rotation throughout its entire life. Vector magnetic data obtained from Huairou Solar Observing Station (HSOS) and full-disk line-of-sight magnetograms from SOHO/MDI allowed the determination of the best-fit force-free parameter (proxy of twist), αbest, and the systematic tilt angle (proxy of writhe) which were both found to take positive values. Soft X-ray coronal loops from Yohkoh/SXT displayed a pronounced forward-sigmoid structure in period of NOAA 9704. These observations imply that the magnetic flux tube (loops) with the same handedness (right) of the writhe and the twist rotated clockwise in the solar atmosphere for a long time. We argue that the continuous clockwise rotation of the long-lived active region may be a manifestation that a highly right-hand twisted and kinked flux tube was emerging through the photosphere and chromosphere into the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号