首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the hydrogeochemistry of thermal and cold waters from south east Tunisia. Temperature intervals are 38.5–68 °C and 22–27.8 °C for thermal water and cold water, respectively. Three distinct hydrogeological systems supply water either for irrigation or for drinking; they are: (1) the Continental Intercalaire geothermal aquifer (CI), (2) the Turonian aquifer and (3) the Senonian aquifer. A synthetic study including hydrochemical, hydrogeological and geothermal approaches have been applied in order to evaluate the inter-aquifers water transfer in south east of Tunisia. By using silica geothermometers and saturation indices for different solid phases, estimated thermal reservoir temperature varies between 52 and 87 °C and between 75 and 110 °C, respectively. Based on chemical and thermal data, mixing, which occurs between the ascending deep geothermal water and shallow cold water, is about 57 % cold water.  相似文献   

2.
Properties of geothermal resources in Kebilli region, Southwestern Tunisia   总被引:2,自引:2,他引:0  
The Kebilli region is located in the Southwestern part of Tunisia, and is characterized by the presence of deep and shallow geothermal systems (continental intercalary and complex terminal). Chemical and isotopic contents are used to classify the type and determine the origin of thermal water. An evaluation of reservoir temperature and a possible geothermal fluid mixing are also carried out. Both continental intercalary-deep aquifer and complex terminal-shallow aquifer are of Na–(Ca)–Cl–(SO4) mixed water type. The use of different geothermometers and the computation of saturation indexes for different solid phases suggests that the thermal reservoir temperature of the continental intercalary is between 92 and 105 °C, while the fluid temperature from the shallow complex terminal aquifer ranges from 50 to 75 °C. Also, the isotopic data indicates the old origin of all groundwater of Southwestern Tunisia. Mixing effects characterizing the continental intercalary and the complex terminal aquifers were identified using δ2H and δ18O relationship. It appears that the upward movement of thermal water from the deep aquifer to shallow ones is probably due to the abundant fractures in the research area.  相似文献   

3.
Thermal waters of the Usak area have temperatures ranging from 33 to 63°C and different chemical compositions. These waters hosted by the Menderes Metamorphic rocks emerge along fault lineaments from two geothermal reservoirs in the area. The first reservoir consists of gneiss, schists, and marbles of the Menderes Metamorphic rocks. The recorded reservoir is Pliocene lacustrine limestone. Hydrogeochemical studies indicate that thermal waters were mixed with surface waters before and/or after heating at depth. The results of mineral equilibrium modeling indicate that all the thermal waters are undersaturated at discharge temperatures for gypsum, anhydrite, and magnesite minerals. Calcite, dolomite, aragonite, quartz, and chalcedony minerals are oversaturated in all of the thermal waters. Water from the reservoir temperatures of the Usak area can reach upto120°C. According to δ18O and δ2H values, all thermal and cold groundwater are of meteoric origin.  相似文献   

4.
This paper reports the results of our studies, the chemical analysis of thermal spring’s waters and their geological settings, the use of different statistical methods to evaluate the origin of the dissolved constituents of spring waters and the estimation of the reservoir temperature of the associated geothermal fields of the Guelma region, Algeria. A major component in 13 spring water samples was analyzed using various techniques. The waters of the thermal springs at Guelma basin vary in temperature between 20 and 94oC. Q-mode hierarchical cluster analysis suggests three groups. The water springs were classified as low, moderate and high salinity. Mineral saturation indices (SI) calculated from major ions indicate the spring waters are supersaturated with the most of the carbonate minerals, and all of the spring water samples are under-saturated with evaporite minerals. The thermal spring waters have a meteoric origin, and all samples are immature with strong mixing between warm and shallow waters, where the temperatures of reservoirs to which the thermal waters are related ranged between 64° and 124°C. The deep circulation of meteoric waters in the study area is supplied by the high geothermal gradient around 4.5°C per 100 m and reaches a high temperature before rising to the surface. The estimated circulation depths ranged from 1425 and 3542 m.  相似文献   

5.
西藏羊八井地热田热水的化学组成   总被引:12,自引:0,他引:12       下载免费PDF全文
赵平  多吉 《地质科学》1998,33(1):61-72
羊八井地热田深、浅层热水都是Cl-Na类型,具有相同的B/Cl比值,说明深层热水在上升通道中与冷水相混合形成了浅层热水。浅层流体自西北向东南流动,温度逐渐降低。浅层热储内普遍存在着水岩交换反应,对热水的化学组成有一定的影响。石英和玉髓地热温度计分别适用于计算深、浅层的热储温度。纳木错(湖)不是羊八井地热田的补给区。深层热水在井筒内绝热汽化时不会出现SiO2结垢,CaCO3是否会在井筒壁沉淀需要放喷较长时间来检验。文中还阐述了对热水的化学组分进行监测的必要性。  相似文献   

6.
地下热水的形成和化学组分特征常受断裂构造和热储地层岩性的影响。川西南喜德地热田内出露的冷泉水和地热水严格受断裂控制,前者为主断裂控制的浅循环型碎屑岩或岩溶裂隙孔隙水;后者则为次级断裂所控制的深循环型裂隙水,其热储层为碳酸盐岩。基于喜德热田形成的地质构造背景,通过开展热田内地热水和冷泉水水化学指标的测试和分析及水岩相互作用模拟,对该热田水文地球化学特征进行了研究。结果表明:喜德热田地热水和冷泉水水源均为大气降水,补给高程分别为2 874~3 092 m和2 584~2 818 m。受温度、含水层矿物类型、水岩相互作用的影响,地热水和冷泉水水化学类型和各组分差别较大,前者为HCO3·SO4-Ca·Mg型水,后者为HCO3-Ca·Mg型水。水岩相互作用模拟表明碳酸盐岩矿物、石膏矿物的溶解和沉淀及阳离子交换过程是导致地热水和冷泉水水化学组分差别较大的主要原因。此外,采用二氧化硅类温标计算喜德热田热储温度为56~90 ℃,循环深度为1 422~2 558 m。研究结果对阐明喜德热田的成因模式,地热水的进一步开发和热水资源的可持续利用具有重要意义。  相似文献   

7.
The Sfax Basin in eastern Tunisia is bounded to the east by the Mediterranean Sea. Thermal waters of the Sfax area have measured temperatures of 23–36°C, and electrical conductivities of 3,200 and 14,980 μS/cm. Most of the thermal waters are characterized as Na–Cl type although there are a few Na–SO4–Cl waters. They issue from Miocene units which are made up sands and sandstones interbedded with clay. The Quaternary sediments cap the system. The heat source is high geothermal gradient which are determined downhole temperature measurements caused by graben tectonics of the area. The results of mineral equilibrium modeling indicate that the thermal waters of the Sfax Basin are undersaturated with respect to gypsum, anhydrite and fluorite, oversaturated with respect to kaolinite, dolomite, calcite, microcline, quartz, chalcedony, and muscovite. Assessments from various chemical geothermometers, Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature of the Sfax area can reach up to 120°C. According to δ18O and δ2H values, all thermal and cold groundwater is of meteoric origin.  相似文献   

8.
A conceptual hydrogeological model of the Viterbo thermal area (central Italy) has been developed. Though numerous studies have been conducted on its geological, geochemical and geothermal features, there is no generalized picture defining the origin and yield of the hydrothermal system. These latter aspects have therefore become the objectives of this research, which is based on new hydrogeological and geochemical investigations. The geological setting results in the coexistence of overlapped interacting aquifers. The shallow volcanic aquifer, characterized by fresh waters, is fed from the area around the Cimini Mountains and is limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of thermal waters of the sulphate-chloride-alkaline-earth type with higher gas contents, are due to the locally uplifted carbonate reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. The hot waters (30–60°C) are the result of deep circulation within the carbonate rocks (0.5–1.8 km) and have the same recharge area as the volcanic aquifer. The upward flow in the Viterbo thermal area is at least 0.1 m3/s. This flow feeds springs and deep wells, also recharging the volcanic aquifer from below.  相似文献   

9.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

10.
研究工作对完善区内高温地热系统成因机理和后期勘探及钻探工作提供一定的参考意义.为进一步研究贵德盆地地热资源赋存状态及热源来源,在充分了解贵德盆地地热地质条件的基础上,采集区内地热流体样品,进行水化学全分析和氢氧同位素分析,得到该区地热流体化学特征和氢氧同位素特征,估算了区内高温热田-扎仓寺热田的热储温度.分析结果表明:该区高温地下热水的水化学类型主要为SO4·Cl-Na型,低温水水化学类型较为复杂,主要为SO4-Na、SO4·HCO3-Na型;扎仓寺热田地下热水中Li+、F-、Sr2+、As3+与Cl-存在很好的正相关性,显示了相同的物质来源,SiO22-与Cl-极高的正相关性进一步验证了扎仓寺地热为深部热源;氢氧同位素数据都集中在当地大气降水线附近,说明地下热水主要为大气降水补给.选用合理的水文地球化学温标计算了扎仓寺热田的热储温度,并利用硅-焓模型分析了该热田地热流体中冷水混入比例及冷水混入前的热储温度,分析认为扎仓寺热田4 000 m以内存在两个热储层,第一热储层热储温度约为133 °C,热循环深度为1 800 m;第二热储层热储温度约为222 °C,热循环深度约为3 200 m.   相似文献   

11.
《Applied Geochemistry》1996,11(3):471-479
Thermal waters with discharge temperatures ranging from 32 to 70°C are being discharged along the Gulf of Suez (Egypt) from springs and shallow artesian wells. A comprehensive chemical and isotopic study of these waters supports previous suggestions that the waters are paleometeoric waters from the Nubian sandstone aquifer. The chemical and isotopic compositions of solutes indicate possible contributions from Tertiary sedimentary aquifer rocks and windblown deposits (marine aerosols and/or evaporite dust) in the recharge area. There is no chemical or isotopic evidence for mixing with Red Sea water. Gas effervescence from the Hammam Faraoun thermal water contains about 4% CH413C = −32.6‰) and 0.03% He having an isotopic ratio consistent with a mixture of crustal and magmatic He (3He/4He = 0.26 Re). Geothermometers for the thermal waters indicate maximum equilibration temperatures near 100°C. The waters could have been heated by percolation to a depth of several km along the regional geothermal gradient.  相似文献   

12.
任大忠  孙卫  黄海  刘登科  屈雪峰  雷启鸿 《地球科学》2016,41(10):1735-1744
鄂尔多斯盆地姬塬油田长6储层原油储量丰富,储层致密制约着油气的勘探开发潜力和评价精度.通过开展物性、粒度、铸体薄片、X衍射、扫描电镜、压汞等测试研究储层特征,以时间为主轴,综合成岩史、埋藏史、地热史、构造等因素,采用“成岩作用模拟”和“地质效应模拟”构建孔隙度演化模型及计算方法探讨致密储层成因机理.结果表明:储层经过较强的演化改造发育微-纳米孔喉系统,形成低孔特低孔-超低渗的致密砂岩储层.H53井长6段孔隙度演化史揭示了增孔和减孔因素对孔隙度及油气充注的影响;通过对比最大粒间孔面孔率、最大溶蚀面孔率、最大压实率、最大胶结率样品孔隙度演化路径和含油饱和度,查明了致密储层成因的差异及品质.   相似文献   

13.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

14.
Jowshan geothermal system comprises 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6°C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The pH value of these springs is slightly acidic to neutral and the electrical conductivities about 1500 μS/Cm. The presence of many faults in the area, the alignment of all springs along the Sirch Fault and the similar chemical and isotopic composition of all springs in combination with the hydrogeological setting and geochemistry of water samples indicate that these springs are associated with deep circulation of meteoric water. According to this heating mechanism, meteoric waters infiltrate through fault openings to depth and after heating by geothermal gradient rise to the ground surface due to the hydraulic and buoyancy forces, a mechanism which is common in the southern parts of Iran. The use of various chemical geothermometers and mineral equilibrium states suggests a range of temperature about 50–90°C for the reservoir of Jowshan geothermal system.  相似文献   

15.
在“雄县模式”和环境压力的双重驱动下,河北地区已形成我国最大的地热供暖城市群。因此,研究武城凸起地热田地热地质特征,对河北省故城县地热开发具有重要的指导意义。本文通过测井、地震和区域地质资料,结合水化学特征、同位素测试结果的分析,系统分析了地热田的不同类型热储展布、储集层物性、地下热水补给来源和循环路径特征,并精细评价了地热资源量。结果表明武城凸起地热田热储类型主要为馆陶组砂岩热储和奥陶系岩溶热储。砂岩热储区域稳定分布,主要产水层为下馆陶组,底板埋深1 200~1 600 m,单井出水量79~123 m3/h, 井口水温52~54 ℃;岩溶热储有利区带主要分布在寒武—三叠系卷入的背斜核部,呈南北向带状展布,主要产水层为上马家沟组、下马家沟组和亮甲山组,顶板埋深2 100~2 900 m,单井出水量75~98 m3/h,井口水温82~85 ℃。地下热水来源为西部太行山脉和北部燕山山脉,热水沿着NE-SW向断裂破碎带和岩溶不整合面向上水平运移进入浅层热储,通过沧县隆起和邢衡隆起在武城凸起汇集,形成中低温地热田。地下热水质类型为Cl-Na型,最大循环深度为2 822.5~3 032.5 m,14C测年表明砂岩热储和岩溶热储年龄分别为21 ka和32 ka。明化镇组和石炭—二叠系分别为两套热储的直接盖层。武城凸起地热田地热资源量分层精细评价结果表明,热储地热资源量合计4.86×1010 GJ,折合标煤16.6×108 t。年可开采地热资源量可满足供暖面积1.1×108 m2,市场开发潜力巨大。  相似文献   

16.
This study observes groundwater hydrochemical characteristics during mixing between geothermal and non-geothermal fluids in Germencik–Nazilli area in the Büyük Menderes Basin (SW Turkey). Hydrogeochemical features of 32 non-geothermal, geothermal and surface samples were studied. The mean temperatures of the geothermal reservoirs are calculated to be 150–240 °C in Germencik field, based on Na-K-Mg geothermometry. Hydrochemical characteristics of Germencik geothermal fluid differ from non-geothermal fluids, mainly Na-Cl-HCO3-type geothermal fluid, while non-geothermal fluid is mostly Ca-Mg-HCO3-SO4 type. High contents of some minor elements in geothermal fluids are most likely sourced from prolonged water-rock interaction, reflecting the signals of flow paths and residence times. A mass-balance approach was used to calculate mixing ratios between geothermal and non-geothermal fluids based on B, Cl and Na concentrations. Germencik field is considerably characterised by rising geothermal fluids and overlying non-geothermal fluids. The amount of water stored in the Quaternary aquifer evolved from a deep thermal source is low in Germencik (.5–40% geothermal fluid in non-geothermal wells). Mixing between geothermal and non-geothermal fluids has been caused by groundwater utilisation practices and is increased close to active faults. Irrigation of the shallow groundwater composition is considered as influx of low-temperature geothermal fluid.  相似文献   

17.
李洁祥  郭清海  王焰新 《地球科学》2015,40(9):1576-1584
高温地热系统中赋存着大量的地热能资源.为了进一步了解高温地热系统, 以腾冲热海热田为典型研究区, 利用热泉地球化学组成, 基于多种地球化学模型确定了热田深部母地热流体的温度, 并分析了其升流后经历的不同冷却过程.热海热田的硫磺塘水热区和热水塘水热区所排泄的热泉源自共同的深部热储, 该热储中母地热流体的Cl-质量浓度为265 mg/L, 温度为336 ℃.在热海热田, 母地热流体在经历绝热冷却过程后直接形成了泉口温度最高的大滚锅泉, 而其他中性泉均由母地热流体先与浅部地下冷水混合再经历绝热冷却形成.母地热流体的深部热储之上存在多个温度在200 ℃以上的热储, 这些热储的形成受控于热海地区发育的多组方向不同的断裂.   相似文献   

18.
A geochemical study on thermal water has been carried out in Tianshui and its adjacent area, Gansu province, China. Chemical and isotopic contents were employed in the investigation on the origin and evolution of thermal water and the evaluation of reservoir temperature in the geothermal systems. Thermal waters in Wushan and Tianshui are characterized by outlet temperatures from 15 to 38°C and low TDS (226?C255?mg/L), defined as bicarbonate water. Its origin may be attributed to the interaction between meteoric rain, biotite plagioclase gneiss and carbonate reservoir rocks. In contrast, thermal waters in Tongwei and Qingshui have higher outlet temperatures of 25?C54.2°C and a moderate TDS of 915?C1,793?mg/L, regarded as sulfate waters. These sulfate waters may arise from the interaction between meteoric water, granite and amphogneiss. Isotopic data presented here suggest that thermal waters in the study area have a meteoric origin without being significantly effected by water?Crock isotope exchange. Chemical geothermometry indicates the existence of a deep geothermal reservoir of low-to-medium enthalpy (70?C111°C) in the Tianshui study area.  相似文献   

19.
The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.  相似文献   

20.
Tulsishyam thermal springs are located in the Saurashtra region of Gujarat, India with discharge temperatures varying from 39 to 42 °C. The pH of these thermal springs varies from 7.1 to 7.4, indicating neutral character. Though these thermal springs propagate through the near surface layer of Deccan basalt, detailed geochemical analysis of the thermal waters using Piper diagram suggests that the water is interacting with the granitic basement rock. Silica and cation geothermometry estimates have reservoir temperature in the range of 138 to 207 °C categorizing it into a low to moderate enthalpy geothermal system. Furthermore, the area has high heat flow values of 53–90 mW/m2 because of shallow Moho depth. The prevailing conditions suggest that the geothermal energy can potentially be exploited through an enhanced geothermal system (EGS). The study also indicates different mineral phases that may precipitate out of water during exploitation of geothermal energy and it should be taken into account while designing an EGS for the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号