首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.  相似文献   

2.
Quantifying the relative value ofPhragmites australis andSpartina alterniflora habitat is important to evaluate the benefits and risks of different attempts to addressPhragmites expansion on the U.S. eastern seaboard. Two contrasting approaches commonly used to restore tidal marsh habitats invaded byPhragmites communities involve sprayingPhragmites with herbicide only when its coverage of a particular marsh area is near or close to 100%. Alternatively, after the first application, herbicide is annually applied on any surviving patches ofPhragmites present in a mosaic of other marsh vegetation. A model is introduced to evaluate the relative habitat value of these control regimes, here termed the Intermittent and Continuous. Compared to the Intermittent approach, the area of herbicide application in the Continuous approach is higher in the first 6 yr, but lower the reafter. The cumulative gain in habitat quality after 20 yr in either approach is sensitive to the presumed relative values ofPhragmites versusSpartina habitat, and may even be negative if they are nearly equal. Annual applications of herbicide to patches ofPhragmites appears to generate more habitat value and with less herbicide than occasional applications whenPhragmites cover is at is maximum.  相似文献   

3.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

4.
Much effort has been directed recently at restoring marshes, by the removal of the invasive common reed,Phragmites australis, yet it is not clear how fish and invertebrates have responded either to the invasion ofPhragmites or to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs toPhragmites invasion and restoration efforts by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molting of crabs in three physically similar areas differing in marsh vegetation;Spartina-dominated,Phragmites-dominated, and a treated area (Phragmites removed and now dominated bySpartina) in one marsh in the upper portion of Delaware Bay. Field sampling occurred monthly (April to November) from 1999 to 2001 using replicate daytime otter trawls in large marsh creeks. Crabs were categorized by carapace width into recruits (<30 mm), juveniles (30–115 mm), and adults (>115 mm). Juveniles dominated the system, representing 69.4% of all crabs. Similar monthly increases in mean size and molting patterns during the growing season (May–August) occurred inSpartina (natural and treated sites) andPhragmites sites suggesting that, subtidal habitats, used for molting, in these areas do not differ. More juveniles in the feeding molt stage (i.e., intermolt) than in other molt stages and more recruits predominantly in the feeding molt stage than adults were inSpartina, suggesting differences in the marsh surfaces used as feeding habitats withSpartina being preferred. Sex ratios of each life history stage were skewed towards males, but this was related to the low salinity of Alloway Creek, rather than marsh surface vegetation. Our results suggest that marsh surface vegetation influences the way blue crabs use marsh surface habitats, thus restoration efforts focusing on changing vegetation type may have a positive influence on blue crabs.  相似文献   

5.
Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.  相似文献   

6.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

7.
Colonial nesting of long-legged wading birds (Ciconiiformes) in the coastal northeastern U.S. is limited primarily to islands, which provide isolated habitats that are relatively free of ground predators. Estuarine wetlands in this heavily developed region, including foraging wetlands and fringe marshes surrounding nesting islands, are often dominated byPhragmites australis. On Pea Patch Island in Delaware Bay, site of one of the largest and most enduring mixed-species heron colonies on the East Coast, wading birds nest inPhragmites marsh habitat as well as in adjacent upland shrubs and trees. BecausePhragmites is aggressively managed in Delaware Bay, we investigated the relative habitat value of marsh and upland nesting sites for the purpose of developing recommendations for marsh and wildlife management. Utilization of marsh habitat by nesting birds ranged from 27–82% during 1993–1998. Two species (great blue heronArdea herodias and great egretA. alba) never nested inPhragmites, four species (little blue heronEgretta caerulea, snowy egretE. thula, cattle egretBubulcus ibis, and black-crowned night-heronNycticorax nycticorax) nested in approximately equal proportions in both habitats, and one species (glossy ibisPlegadis falcinellus) was largely confined to marsh nesting. Productivity (egg and nestling production) varied between habitats for some species. Cattle egrets produced larger clutches and had higher hatching rates inPhragmites compared to upland habitat. Little blue herons were more successful in the uplands. Managers should retainPhragmites marsh at colony sites, such as Pea Patch Island, where it provides critical habitat for nesting wading birds both as substrate for nesting and buffer habitat to control human disturbance.  相似文献   

8.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

9.
The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.  相似文献   

10.
We compared nekton densities over a range of measured flooding conditions and locations withinPhragmites australis andSpartina alterniflora (salt marsh cordgrass) at the Charles Wheeler Salt Marsh, located on the lower Housatonic River estuary in southwestern Connecticut. Nekton were sampled on nine spring high tide events from May to October 2000 using bottomless lift nets positioned between 0–5 and 10–20 m from the creek edge. Flooding depth, duration, and frequency were measured from each vegetation type during each sampling month. Benthic macroinvertebrate density was also measured within each vegetation type in May, July, and September. Frequency of flooding was 52% lower and flooding depth and duration were also significantly reduced inP. australis relative toS. alterniflora. A total of 4,197 individuals representing 7 species, mostlyPalaemonetes pugio (dagger-blade grass shrimp) andFundulus heteroclitus (common mummichog), were captured.P. pugio densities were significantly greater inS. alterniflora as were benthic macroinvertebrate density and taxa richness during May, but not during June or October. Total fish density was not significantly different betweenP. australis andS. alterniflora and was independent of location on the marsh. Significantly more juvenileF. heteroclitus were collected withinS. alterniflora relative toP. australis in June and July, suggesting that recruitment of this species may be lower inP. australis habitat. Fish density generally did not vary predictably across the range of flooding depth and duration; there was a positive relationship between flooding depth and fish density inS. alterniflora. The measured reduction in flooding frequency (52%) withinP. australis at the Housatonic site would result in an average total monthly fish use, expressed as density, of 447 ind m−2 forP. australis and 947 ind m−2 forS. alterniflora. WhenP. australis expansion results in reduction of flooding frequency and duration, nekton community composition can change, access to the marsh surface is reduced twofold, and nursery habitat function may be impaired.  相似文献   

11.
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, andFundulus heteroclitus isotope values (δ13C, δ15N, δ34S) were examined to assess their use as indicators for changes in food web support functions in tidally-restored salt marshes. Study sites, located throughout the southern New England region (USA), ranged fromSpartina alterniflora-dominated reference marshes, marshes under various regimes and histories of tide restoration, and a severely tide-restrictedPhragmites australis marsh.Fundulus δ13C values were greater for fish from referenceSpartina marshes than for fish from adjacent tide-restricted or tide-restored marshes where higher percent cover of C3 plants, lower water column salinities, and more negative dissolved inorganic δ13C values were observed. The difference inFundulus δ13C values between a tide-restrictedPhragmites marsh and an adjacent referenceSpartina marsh was great compared to the difference between marshes at various stages of tide restoration and their respective reference marshes, suggesting that food web support functions are restored as the degree of tidal restriction is lessened. While a multiple isotopic approach can provide valuable information for determining specific food sources to consumers, this study demonstrates that monitoringFundulus δ13C values alone may be useful to evaluate the trajectory of ecological change for marshes undergoing tidal restoration.  相似文献   

12.
The saltmarsh topminnow (Fundulus jenkinsi) is federally listed as a Species of Concern due to a its rarity, impacts from human activities, and lack of information on its biology and ecology. From 2007 through 2008, we used Breder traps to fish the marsh edge on a falling tide in four regions from Louisiana through the Florida panhandle during winter, spring, and summer periods. Out of 2,108 Breder traps deployed, 661 F. jenkinsi were collected as far east as Escambia Bay, Florida, with Weeks Bay, National Estuarine Research Reserve (NERR), Alabama, yielding the highest F. jenkinsi abundance. Principal component analysis (PCA) was used to ordinate physical–chemical data into two meaningful components: a geomorphic axis (water depth, bank slope, and plant stem density) and a seasonal/spatial axis of species occurrence (water temperature, salinity, and turbidity). PCA showed a higher mean catch-per-unit-effort (CPUE) in environments comprised of low to moderate stem density (<25 stems/0.25 m−2), depth (<25 cm), bank slope (<15°), turbidity (<30 NTU), and salinity (<16) coupled with spring and early summer water temperatures (>15°C). F. jenkinsi CPUE was significantly higher in Spartina cynosuroides marsh edge compared with five other habitat types, even though it was one of the least sampled habitats. This species appears to be collected more frequently and in higher CPUE in small dendritic creeks off of main channels than suggested by our previous work in main channel edge habitat. This suggests that small creeks are important vectors for marsh access and supports the value of the dendritic nature of salt marshes to marsh residents.  相似文献   

13.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

14.
The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.  相似文献   

15.
Marsh creation has come into increasing use as a measure to mitigate loss of valuable wetlands. However, few programs have addressed the functional ecological equivalence of man-made marshes and their natural counterparts. This study addresses structural and functional interactions in a man-made and two natural marshes. This was done by integrating substrate characteristics and marsh utilization by organisms of two trophic levels. Sediment properties, infaunal community composition, andFundulus heteroclitus marsh utilization were compared for a man-madeSpartina salt marsh (between ages 1 to 3 yr) in Dills Creek, North Carolina, and adjacent natural marshes to the east and west. East natural marsh and planted marsh sediment grain-size distributions were more similar to each other than to the west natural marsh due to shared drainage systems, but sediment organic content of the planted marsh was much lower than in either natural marsh. This difference was reflected in macrofaunal composition. Natural marsh sediments were inhabited primarily by subsurface, deposit-feeding oligochaetes whereas planted marsh sediments were dominated by the tube-building, surface-deposit feeding polychaetesStreblospio benedicti andManayunkia aestuarina. Infaunal differences were mirrored inFundulus diets. Natural marsh diets contained more detritus and insects, because oligochaetes, though abundant, were relatively inaccessible. Polychaetes and algae were major constituents of the planted marshFundulus diet. Though naturalmarsh fish may acquire a potentially less nutritive, detritus-based diet relative to the higher animal protein diet of the planted marsh fish,Fundulus abundances were markedly lower in the planted marsh than in the natural marshes, indicating fewer fish were being supported. LowerSpartina stem densities in the planted marsh may have provided inadequate protection from predation or insufficient spawning sites for the fundulids. After three years, the planted marsh remained functionally distinct from the adjacent natural marshes. Mitigation success at Dills Creek could have been improved by increasing tidal flushing, thereby enhancing, access to marine organisms and by mulching withSpartina wrack to increase sediment organic-matter content and porosity. Results from this study indicate that salt marshes should not be treated as a replaceable resource in the short term. The extreme spatial and temporal variability inherent to salt marshes make it virtually impossible to exactly replace a marsh by planting one on another site.  相似文献   

16.
Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.  相似文献   

17.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

18.
We examined the 5-yr (1996–2000) response of subtidal marsh creek fishes (2,793 trawls, 47 species, 30,719 fish) to a large marsh restoration project in the upper Delaware Bay, and found that the salinity gradient covaried along with marsh surface vegetation type among two treated and one untreated reference sites, confounding direct comparison of fish utilization. Examination of environmental correlates with monthly yearly trends highlighted differences between potential mechanism driving assemblage dynamics either intrinsic or extrinsic to the marshes. Within-site and among-site differences in fish assemblage, as described by principal components analysis, correlated poorly with marsh vegetation on both seasonal and interannual scales and appeared to driven by larval supply. Assemblage dynamics could be expalined in part by the occurrence of juveniles of transient marine fishes along a salinity gradient (0–15.2%) range in monthly site mean), but were largely determined by fluctuations in the distribution of two transient species: young-of-the-year bay anchovyAnchoa mitchilli and Atlantic croakerMicropogonias undulatus. A minor mode in variance, driven by locally spawned species, was moderately correlated with environmental parameters. Analysis of marshes on an individual basis did not discern additional important gradients. Our findings are in contrast to those in systems dominated by resident species, probably because transient fishes, which often dominante the system, are more plastic to the nature of ecological services or are affected as much by environment outside of the marsh as by that in the marsh.  相似文献   

19.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

20.
To test whether invasive Spartina alterniflora marshes were functionally equivalent to native Scirpus mariqueter marshes, the present study used bottomless lift nets (20 m2) during 12 high-tide events from August to October 2008 to compare nekton densities and biomass between the two marsh types in the Dongtan wetland. A total of eight species of fish, two species of shrimp, and three species of crab were collected. So-iny mullet Chelon haematocheilus, keeled mullet Liza carinata, Asian freshwater goby Acanthogobius ommaturus, and ridge-tail prawn Exopalaemon carinicauda dominated samples from the two marsh types and accounted for over 90% of the total catch. There were significantly greater densities and biomass (p < 0.05) of total nekton (all species combined) and two mullets (C. haematocheilus and L. carinata) in S. alterniflora marshes than in S. mariqueter marshes in August 2008, while no significant differences (p > 0.05) between the two marsh types were observed for densities and biomass of any species or total nekton in September and October 2008. Non-metric multidimensional scaling ordination did not show clear separation of samples between the two marsh types (r = 0.071, p = 0.159). Furthermore, there were no habitat-specific differences (p > 0.05) in the size distributions of the three numerically dominant species (C. haematocheilus, L. carinata, and A. ommaturus). We concluded that S. alterniflora marshes were utilized by nekton in a fashion similar to their utilization of native S. mariqueter marshes under similar physical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号