首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use a self-consistent model of galaxy formation and the evolution of the intergalactic medium to study the effects of the reionization of the Universe at high redshift on the properties of satellite galaxies like those seen around the Milky Way. Photoionization suppresses the formation of small galaxies, so that surviving satellites are preferentially those that formed before the Universe reionized. As a result, the number of satellites expected today is about an order of magnitude smaller than the number inferred by identifying satellites with subhaloes of the same circular velocity in high-resolution simulations of the dark matter. The resulting satellite population has an abundance similar to that observed in the Local Group, although the distribution of circular velocities differs somewhat from the available data. We explore many other properties of satellite galaxies, including their gas content, metallicity and star formation rate, and find generally good agreement with available data. Our model predicts the existence of many as yet undetected satellites in the Local Group. We quantify their observability in terms of their apparent magnitude and surface brightness, and also in terms of their constituent stars. A near-complete census of the Milky Way's satellites would require imaging to   V ≈20  and to a surface brightness fainter than 26 V -band magnitudes per square arcsecond. Satellites with integrated luminosity   V =15  should contain of order 100 stars brighter than   B =26  , with central stellar densities of a few tens per square arcminute. Discovery of a large population of faint satellites would provide a strong test of current models of galaxy formation.  相似文献   

2.
It is shown that the giant low surface brightness galaxies (GLSBs), characterized by a large but diffuse disc component, can result from ordinary spiral galaxies through dynamical evolution. Numerical simulations indicate that the formation of a bar in a gravitationally unstable disc with high surface density induces non-circular motions and radial mixing of disc matter, leading to the flattening of the disc density profile. The resulting decrease in the disc central surface brightness is ∼1.5 magnitude, while the disc scalelength is nearly doubled, transforming a typical high surface brightness galaxy to a GSLB. This scenario seems promising especially for the GSLBs possessing a significant bulge, which are difficult to incorporate into the traditional Hubble sequence. Namely, because this disc transmutation can operate even if a moderate bulge component exists, the GSLBs with a bulge are argued to have resulted from the high surface brightness galaxies which had already possessed a bulge. The current picture naturally explains other observed characteristics of the GSLBs as well, including the propensity for having grand-design spiral arms and a bar, a high incidence of active nuclei, and galaxy environments.  相似文献   

3.
Recent observational studies have discovered very small dwarf spheroidal galaxies (dSphs) which are the faintest member of the local group of galaxies. This paper examines their faintness because of the following reason: Comparing their M/L (mass-luminosity ratio) to that of the other normal dSphs, we find very small dSphs are faint for their dark matter mass. This indicates their star formation is suppressed. There are two possibilities for the suppression: (1) ram pressure of IGM (intra-group medium), (2) wind from the Milky Way (MW). Owing to the ram pressure, interstellar medium of very small dSphs is possible to be stripped because of the shallowness of their gravitational potential. That is, star formation can be terminated during their evolution. However, the latter is difficult at the moment since their distance is far from MW. The author suggests star formation was terminated only when very small dSphs were beside MW whose wind was strong.  相似文献   

4.
Using the “Updated Nearby Galaxy Catalog”, we consider different properties of companion galaxies around luminous hosts in the Local Volume. The data on stellar masses, linear diameters, surface brightnesses, HI‐richness, specific star formation rate (sSFR), and morphological types are discussed for members of the nearest groups, including the Milky Way and M 31 groups, as a function of their separation from the hosts. Companion galaxies in groups tend to have lower stellar masses, smaller linear diameters, and fainter mean surface brightnesses as the distance to their host decreases. The hydrogen‐to‐stellar mass ratio of the companions increases with their linear projected separation from the dominant luminous galaxy. This tendency is more expressed around the bulge‐dominated hosts. While linear separation of the companions decreases, their mean sSFR becomes lower, accompanied with the increasing sSFR scatter. the typical linear projected separation of dSphs around the bulge‐dominated hosts, 350 kpc, is substantially larger than that around the disk‐dominated ones, 130 kpc. This difference probably indicates the presence of larger hot/warm gas haloes around the early‐type host galaxies. The mean fraction of dSph (quenched) companions in the 11 nearest groups as a function of their projected separation Rp can be expressed as ƒ(E) = (0.55–0.69)×Rp. The fraction of dSphs around the Milky Way and M 31 looks much higher than in other nearby groups because the quenching efficiency dramatically increases towards the ultra‐low mass companions. We emphasize that the observed properties of the Local Group are not typical for other groups in the Local Volume due to the role of selection effects caused by our location inside the Local Group. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We investigate in detail the hypothesis that low-surface-brightness galaxies (LSBs) differ from ordinary galaxies simply because they form in haloes with large spin parameters. We compute star formation rates using the Schmidt law, assuming the same gas infall dependence on surface density as used in models of the Milky Way. We build stellar population models, predicting colours, spectra and chemical abundances. We compare our predictions with observed values of metallicity and colours for LSBs, and find excellent agreement with all observables. In particular, integrated colours, colour gradients, surface brightness and metallicity match very well to the observed values of LSBs for models with ages larger than 7 Gyr and high values (λ > 0.05) for the spin parameter of the haloes. We also compute the global star formation rate (SFR) in the Universe due to LSBs, and show that it has a flatter evolution with redshift than the corresponding SFR for normal discs. We furthermore compare the evolution in redshift of [ Zn / H ] for our models to those observed in damped Lyman α systems by Pettini et al. and show that damped Lyman α system abundances are consistent with the predicted abundances at different radii for LSBs. Finally, we show how the required late redshift of collapse of the halo may constrain the power spectrum of fluctuations.  相似文献   

6.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

7.
We have investigated the apparent variation of the surface brightness distribution of disc galaxies with distance within three different samples 1) a diameter limited sample of ESO catalogue galaxies in the direction of the cluster A3574 in Centaurus, 2) all ESO catalogue disc galaxies with redshifts, and 3) a sample of fainter galaxies from our surveys of the Fornax Cluster area. In each case we find, as predicted for a sample dominated by surface brightness selection effects, that the distribution narrows with distance. Both high and low surface brightness galaxies are underrepresented in galaxy catalogues. Not because they are rare, but because the volume over which they are sampled is considerably smaller than that of their normal surface brightness counterparts. The question of how many galaxies there are in the Universe remains un-answered. In addition, since selection is byapparent surface brightness, the most distant sample (where cosmological dimming becomes important) contains galaxies of higher intrinsic surface brightness than do the nearby samples, again confirming a previous theoretical prediction. The galaxies we observe in the distant Universe are very different to those we observe close by because of observational selection.  相似文献   

8.
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their H  i signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common H  i surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.  相似文献   

9.
对于星系际弥散恒星的研究是分别从观测、数值模拟和半解析模型这三个方面进行的.现在已经在邻近星系团及中低红移处观测到弥散恒星,甚至在Virgo及Coma星系团中观测到了单个的弥散恒星.观测数据的积累使得人们能够从统计上了解星系际弥散恒星的性质.研究表明星系际弥散恒星围绕着星系团势阱中心呈椭球状对称分布,其在星系团恒星总质...  相似文献   

10.
Based on SDSS data and spectroscopic observations with the 6-m BTA telescope at SAO RAS, we have studied the galaxy SDSS J170745+302056. By the set of its characteristics— an exponential brightness distribution, a central stellar disk surface brightness μ0(B) = 23m. 25/—, blue colors, a low metallicity, and a moderate star formation rate—this galaxy belongs to typical low-surfacebrightness spiral galaxies. The exponential scale length of the galaxy’s disk is ≈3 kpc, while its optical diameter exceeds 20 kpc. SDSS J170745+302056 is a member of a group of five galaxies and possibly interacts with the galaxy UGC 10716. The existence of a large low-surface-brightness galaxy in such a dense environment is very unusual.  相似文献   

11.
While galactic bulges may contain no significant dust of their own, the dust within galaxy discs can strongly attenuate the light from their embedded bulges. Furthermore, such dust inhibits the ability of observationally determined inclination corrections to recover intrinsic (i.e. dust-free) galaxy parameters. Using the sophisticated 3D radiative transfer model of Popescu et al. and Tuffs et al., together with the recent determination of the average face-on opacity by Driver et al. in nearby disc galaxies, we provide simple equations to correct (observed) disc central surface brightness and scalelengths for the effects of both inclination and dust in the B , V , I , J and K passbands. We then collate and homogenize various literature data sets and determine the typical intrinsic scalelengths, central surface brightness and magnitudes of galaxy discs as a function of morphological type. All galaxies have been carefully modelled in their respective papers with a Sérsic   R 1/ n   bulge plus an exponential disc. Using the bulge magnitude corrections from Driver et al., we additionally derive the average, dust-corrected, bulge-to-disc flux ratio as a function of galaxy type. With values typically less than 1/3, this places somewhat uncomfortable constraints on some current semi-analytic simulations. Typical bulge sizes, profile shapes, surface brightness and deprojected densities are provided. Finally, given the two-component nature of disc galaxies, we present luminosity–size and (surface brightness)–size diagrams for discs and bulges. We also show that the distribution of elliptical galaxies in the luminosity–size diagram is not linear but strongly curved.  相似文献   

12.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

13.
From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift—known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF.  相似文献   

14.
We use N -body simulations to study the tidal evolution of globular clusters (GCs) in dwarf spheroidal (dSph) galaxies. Our models adopt a cosmologically motivated scenario in which the dSph is approximated by a static Navarro, Frenk & White halo with a triaxial shape. We apply our models to five GCs spanning three orders of magnitude in stellar density and two in mass, chosen to represent the properties exhibited by the five GCs of the Fornax dSph. We show that only the object representing Fornax's least dense GC (F1) can be fully disrupted by Fornax's internal tidal field – the four denser clusters survive even if their orbits decay to the centre of Fornax. For a large set of orbits and projection angles, we examine the spatial and velocity distribution of stellar debris deposited during the complete disruption of an F1-like GC. Our simulations show that such debris appears as shells, isolated clumps and elongated overdensities at low surface brightness (≥26 mag arcsec−2), reminiscent of substructure observed in several Milky Way dSphs. Such features arise from the triaxiality of the galaxy potential and do not dissolve in time. The kinematics of the debris depends strongly on the progenitor's orbit. Debris associated with box and resonant orbits does not display stream motions and may appear 'colder'/'hotter' than the dSph's field population if the viewing angle is perpendicular/parallel to the progenitor's orbital plane. In contrast, debris associated with loop orbits shows a rotational velocity that may be detectable out to a few kpc from the galaxy centre. Chemical tagging that can distinguish GC debris from field stars may reveal whether the merger of GCs contributed to the formation of multiple stellar components observed in dSphs.  相似文献   

15.
Through the morphological classifications for 290 member galaxies in the nearby galaxy Abell 2199, the star formation rates and their relations with their morphology and related physical properties are investigated in this paper. It is found that the typical star formation rate in galaxies of this galaxy cluster is strongly correlated with the Hα equivalent width, and the degree of discontinuity of the galaxy spectrum at 4000 Å is also strongly correlated with the stellar mass included in the galaxy. It is also found that star formation activities in these galaxies do not exhibit the obvious circumstance effect. This result indicates that this galaxy cluster is still situated at the stage of the violent dynamical evolution and far from the dynamical equilibrium.  相似文献   

16.
We simulate the collisional formation of a ring galaxy and we integrate its evolution up to 1.5 Gyr after the interaction. About 100–200 Myr after the collision, the simulated galaxy is very similar to observed ring galaxies (e.g. Cartwheel). After this stage, the ring keeps expanding and fades. Approximately 0.5–1 Gyr after the interaction, the disc becomes very large (∼100 kpc) and flat. Such extended discs have been observed only in giant low surface brightness galaxies (GLSBs). We compare various properties of our simulated galaxies (surface brightness profile, morphology, H  i spectrum and rotation curve) with the observations of four well-known GLSBs (UGC 6614, Malin 1, Malin 2 and NGC 7589). The simulations match quite well the observations, suggesting that ring galaxies could be the progenitors of GLSBs. This result is crucial for the cold dark matter (CDM) model, as it was very difficult, so far, to explain the formation of GLSBs within the CDM scenario.  相似文献   

17.
A study is being made of a sample of about 4,000 Low Surface Brightness (LSB) galaxies detected in the 2MASS all-sky near-infrared survey. These objects have similar central K-band surface brighnesses as optically selected LSBs. About 1,000 of them were observed in HI, and one third of these were detected. BVRI CCD photometry was obtained of 65 objects. These multi-wavelength data provide us with important information on a large, homogenous sample of LSB galaxies (e.g., colors, gas content). They will be used to construct models of the star formation histories and evolution of LSBs, and for a study of their Tully-Fisher (TF) relation, particularly to search for deviations from the ‘classical’ TF relation. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
The fundamental plane (FP) scaling relations and their evolution are a powerful tool for studying the global properties of early-type galaxies and their evolutionary history. The form of the FP, as derived by surveys in the local Universe at wavelengths ranging from the U to the K band, cannot be explained by metallicity variations alone among early-type galaxies; systematic variations in age, dark matter content, or homology breaking are required. A large-scale study of early-type galaxies at 0.1 < z < 0.6demonstrates that the SB intercept of the FP, the rest frame (U-V) colour, and the absorption line strengths all evolve passively, thereby implying a high mean formation redshift for the stellar content. The slope of the FP evolves with redshift, which is broadly consistent with systematic age effects occurring along the early-type galaxy sequence. The implication that the least luminous early-type galaxies formed later than the luminous galaxies is discussed in the context of the evolution of thecolour–magnitude relation, the Butcher–Oemler effect and hierarchical galaxy formation models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Old, metal-poor globular clusters trace the formation and evolution of early-type galaxies. Their are the best probes, at low redshift, of the building-up of galaxy halos at high redshift. Their properties constrain the characteristics of their progenitors. Recent results suggest that DLAs atz > 3 are the likely hosts for their formation. Finally, they shed light on the old, metal-poor halos probably present around all early-type galaxies. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Research on two-dimensional (2-D) properties of galaxies is a significant component of the study of galaxy formation and evolution. Through the spatial distribution of physical properties (derived from integrated luminosity and spectroscopy) of galaxies, we are allowed to realize the inner environment and evolution history of each individual galaxy and finally answer how galaxies were assembled. In this paper, with reviewing previous work, we present a proposal for study on 2-D properties of nearby galaxies. In our prospective work, we will make use of multi-wavelength data covering a range from ultraviolet to far-infrared to determine the distributions of properties such as age, metallicity and dust-reddening in nearby galaxies, and try to remove the degeneracy among them. Combining with surface photometry and spectroscopy, we will also analyze the distribution of HII regions and star formation properties in galaxies. In our future plan, the World Space Observatory for Ultraviolet (WSO/UV) will be applied to our research and allow detail diagnosis of nearby galaxies at ultraviolet band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号