首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   

2.
东昆仑断裂带西大滩段全新世古地震研究*   总被引:2,自引:5,他引:2  
对东昆仑断裂带西大滩段进行了断错地貌填图和古地震探槽揭露,共揭露出6次古地震事件,它们的年龄分别为10302±651aB.P. , 8650±500aB.P. , 7160±506aB.P. , 2830±170aB.P. , 1985±121aB.P.和1540±92aB.P. ;古地震重复间隔分别为1652±820a,1490±711a,4330±534a,845±209a和445±152a。研究发现,西大滩段全新世古地震活动具有丛集现象和重复间隔时间的分段性,第1丛集期在10300~7100aB.P.期间,平均重复间隔1571±543a,第2丛集期在2800~1500aB.P.期间,重复间隔400~800a左右,平均重复间隔645±129a,两个丛集期间隔4300a。西大滩段全新世地震活动规律对昆仑山地区未来地震危险性评估具有重要意义。  相似文献   

3.
In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben in its hanging wall. The seismic reflection profile shows that the fill of this 2,000–3,000 m thick asymmetric basin is syntectonic. The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/year for the Baza Fault, being one of the major active normal faults to accommodate the current ENE–WSW extension produced in the central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the extension in the upper crust from the Late Miocene to the present in this regional compressive setting.  相似文献   

4.
The Dead Sea is a large, active graben within the Dead Sea rift, which is bounded by two major strike-slip faults, the Jericho and the Arava faults. We investigated the young tectonic activity along the Jericho fault by excavating trenches, up to 3.5 m deep, across its trace. The trenches penetrate through Late Pleistocene and Holocene sediments. We found that a zone, up to 15 m wide, of disturbed sediments exists along the fault. These disturbed sediments provide evidence for two periods of intensive activity or more likely, for two major earthquakes, that occurred during the last 2000 years. The earthquakes are evident in small faults, vertical throw of a few layers, cracks, unconformities and wide fissures. We further documented evidence for recent sinistral shear along the Jericho fault in deformed sediments and damage to an 8th Century palace on a subsidiary fault. We suggest that the two earthquakes may be correlated with the 31 B.C. earthquake and the 748 A.D. earthquake, reported by the ancients.  相似文献   

5.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

6.
Detecting the paleoseismological specifications as well as seismic capability of faults has specific importance in estimating the earthquake hazard in any region. The geomorphic indices are used as indirect procedures in the mountainous area. They are appropriate and applicable methods in recognizing the specifications of active tectonics and evaluating fault seismicity in the mountainous areas. In this regard, giant landslides can be pointed out as proper indices. These landslides are usually related to tectonics and triggered by earthquakes in many cases. In this research, giant landslides existed in Noor valley (central Alborz) have been considered as geomorphological indices for recognizing the seismicity of the region and the seismic capability of its faults. There are four giant landslides in this region (Baladeh, Razan, Vakamar, and Iva) used for the mentioned purpose. No historical earthquake has been reported around Noor valley. However, the existence of giant and old landslides, related to earthquake, indicates the occurrence of numerous prehistoric earthquakes. In this research, three different age classes have been determined (Late Holocene, Early Holocene, and Late Pleistocene) for landslides. By the way, the possibility of identifying multiple earthquakes is provided in this area. The magnitudes of earthquakes are estimated as 7.7 ± 0.49 to 7.9 ± 0.49 based on their relations with maximum volume of displaced material. Regarding the distribution of landslides and other evidences, the eastern segment of Baladeh fault has probably been the main cause of the earthquakes.  相似文献   

7.
In the recent structure of the Baikal Rift Zone, the Kichera Fault serves as the northwestern boundary of the Angara-Kichera aggradation depression. A seismotectonic scarp 60 m high was formed as a result of normal faulting during the late Pleistocene and Holocene. The erosion-aggradation and seismic landforms testify to the nonuniform growth of this scarp. To study the character of the seismic activity in the Kichera Fault Zone, we excavated two trenches across the seismotectonic scarp. The Holocene stage of the seismotectonic activation within the fault zone and the preceding period of relative quiescence were outlined from the character of the deformations in the trench sections and previous geomorphic investigations. According to our preliminary estimations, the active stage that started at the end of the late Pleistocene and that has remained incomplete until now was accompanied by at least three rupture-forming earthquakes.  相似文献   

8.
We carried out paleoseismological analyses in Norcia, one of the oldest town of central Italy. Four trenches were dug in late Pleistocene–Holocene deposits, across an unmapped, antithetic splay of the Norcia Fault System. The investigated fault runs through the recent settlement of the town, brushing against the middle-age city walls. We found evidence of repeated surface ruptures in the past 20 ky, the last one dated to a period fitting with the 1703 AD, catastrophic earthquake (M = 6.8). Our data (i) show definitively the late Pleistocene–Holocene activity of the Norcia Fault System, (ii) strengthen the historical accounts describing surface ruptures during the 1703 event in Norcia, (iii) cast light on the seismogenic behavior of the 70-km-long fault system between L'Aquila and Norcia (central Italy) and (iv) predict the occurrence of normal surface faulting inside the municipality of Norcia during future M ≥ 6 earthquakes.  相似文献   

9.
Deltas contain sedimentary records that are not only indicative of water‐level changes, but also particularly sensitive to earthquake shaking typically resulting in soft‐sediment‐deformation structures. The Kürk lacustrine delta lies at the south‐western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re‐evaluates water‐level changes and earthquake shaking that have affected the Kürk Delta, combining geophysical data (seismic‐reflection profiles and side‐scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water‐level changes provides a temporal framework for the depositional record. In addition to the common soft‐sediment deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake‐induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a palaeoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the East Anatolian Fault. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the ad 1874 to 1875 East Anatolian Fault earthquake sequence. Their sedimentological characteristics were determined by X‐ray imagery, X‐ray diffraction, loss‐on‐ignition, grain‐size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post‐seismic sediment reworking of earthquake‐triggered landslides.  相似文献   

10.
西昆仑—西南天山地区断裂活动性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
李建华  张家声等 《地质学报》2002,76(3):347-353,T001,T002
利用多时相、多波段卫星图像,对西昆仑-西南天山地区大约500000km^2范围的断裂活动性进行分析判读。根据卫星图像上显示的地貌、微地貌特征,构造组合形态,将所判读的断裂分为全新世活动、晚更新世活动以及活动不明显的3类,结合地震活动性,对该地区强震危险性进行了分析,提出西昆仑布伦口组合构造带活动,可能是形成20世纪南天山前缘乌恰、阿图什、伽师一系列强烈地震的原因。  相似文献   

11.
One of the most destructive historical earthquakes (M 6.7) in Spain occurred in 1884 along the normal Ventas de Zafarraya Fault located in the Central Betic Cordilleras. Palaeoseismic and radiocarbon data presented in this study are the first to constrain the timing of the pre-1884 fault history in the last 10 ka. These data yield a recurrence interval of between 2 and 3 ka for major earthquakes, under the assumption of uniform return periods along the normal fault. The Holocene slip rate is estimated to be in the order of 0.35±0.05 mm/year, which is significantly higher than the mean slip rate of 0.17±0.03 mm/year since the Tortonian. Several of the most important deformations and secondary features, such as landslides and liquefaction, are related to strong ground motion and document the Holocene activity of the Ventas de Zafarraya Fault.  相似文献   

12.
The present-day seismicity in northeastern Tunisia reported from permanent networks is of low to moderate magnitude. However, earthquakes are mentioned in the literature, specially a destructive one in the antique city of Utique. Geologic, seismic, and neotectonic investigations in this area show that the Utique fold is closely related to the recent tectonic activity in this region. Data show that the Utique fold is built on an east-west fault, and we found evidence of activity of this fault in the past 20 kyr. A seismic section and balanced cross-section show that the slip rate is of the order of 0.38 mm.yr−1. Our data show definitively the Late Pleistocene–Holocene activity of the Utique Fault; and we can predict the earthquake recurrence interval which should be of ∼103–104 yr. This high seismic risk zone deserves to be taken into account during the establishment of important regional development programs and in the application of seismic building codes.  相似文献   

13.
The September 24, 1999 Ahram Earthquake in southwestern Iran was moderate in energy (M = 5.0–5.5 from different sources) and did not entail significant destruction and casualities. The tectonic position of the source zone, surficial seismic dislocations, and results of macroseismic and seismological study of this seismic event in the junction zone of the Zagros Fold System and the piedmont plain are described in the paper, including data on rejuvenated ancient ruptures exposed in two trenches excavated across the strike of the regional Kazerun-Borazjan Fault. One of the trenches was driven a few months before and the other a year after this seismic event. The conclusion is drawn that new deformations in the Quaternary near-surface sediments observed at the walls of both trenches may be regarded as unusual seismic ruptures of the Ahram earthquake. These ruptures, described as proved primary seismic dislocations of such a moderate seismic event, are a unique phenomenon in the world seismotectonic practice. The localization of the earthquake source zone in the Kazerun-Borazjan Fault Zone with complex kinematics makes it possible to study the internal structure of one of the most important tectonic lines of the Zagros Fold Region.  相似文献   

14.
利用近年来采集的高分辨率地震剖面资料,编制了渤海海峡跨海通道工程区主要活动断裂分布图,并对其中各断裂的垂直活动速率进行计算,发现渤海海峡跨海通道工程区内NE—NNE向断裂晚更新世以来的平均垂直活动速率为0103 mm/a,NW向断裂的平均垂直活动速率为0080 mm/a,其中NE—NNE向断裂和NW向断裂的活动速率呈由南到北逐渐增强的趋势,NW向断裂还表现出明显的自西向东活动速率逐渐增强的特点。另外,通过与现代小震资料和历史地震资料进行对比,发现研究区内地震分布具有不均匀性,地震活动性随着与断裂之间距离的增加而减弱,且在断裂交点和端点处活动性较强。研究区内地震的这些分布特征能够用弹性回跳学说解释。此外,研究区内地震活动性与断裂的水平位移速率关系可能更为密切,其与断裂垂直活动速率的关系还需要进一步研究。  相似文献   

15.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

16.
The study region is located in the Lower Tagus Valley, central Portugal, and includes a large portion of the densely populated area of Lisbon. It is characterized by a moderate seismicity with a diffuse pattern, with historical earthquakes causing many casualties, serious damage and economic losses. Occurrence of earthquakes in the area indicates the presence of seismogenic structures at depth that are deficiently known due to a thick Cenozoic sedimentary cover. The hidden character of many of the faults in the Lower Tagus Valley requires the use of indirect methodologies for their study. This paper focuses on the application of high-resolution seismic reflection method for the detection of near-surface faulting on two major tectonic structures that are hidden under the recent alluvial cover of the Tagus Valley, and that have been recognized on deep oil-industry seismic reflection profiles and/or inferred from the surface geology. These are a WNW–ESE-trending fault zone located within the Lower Tagus Cenozoic basin, across the Tagus River estuary (Porto Alto fault), and a NNE–SSW-trending reverse fault zone that borders the Cenozoic Basin at the W (Vila Franca de Xira–Lisbon fault). Vertical electrical soundings were also acquired over the seismic profiles and the refraction interpretation of the reflection data was carried out. According to the interpretation of the collected data, a complex fault pattern disrupts the near surface (first 400 m) at Porto Alto, affecting the Upper Neogene and (at least for one fault) the Quaternary, with a normal offset component. The consistency with the previous oil-industry profiles interpretation supports the location and geometry of this fault zone. Concerning the second structure, two major faults were detected north of Vila Franca de Xira, supporting the extension of the Vila Franca de Xira–Lisbon fault zone northwards. One of these faults presents a reverse geometry apparently displacing Holocene alluvium. Vertical offsets of the Holocene sediments detected in the studied geophysical data of Porto Alto and Vila Franca de Xira–Lisbon faults imply minimum slip rates of 0.15–0.30 mm/year, three times larger than previously inferred for active faults in the Lower Tagus Valley and maximum estimates of average return periods of 2000–5000 years for M 6.5–7 co-seismic ruptures.  相似文献   

17.
We tested a new hybrid method for the evaluation of seismic hazard. A recently proposed fault segmentation and earthquake recurrence model of peninsular Italy suggests that the interval for which the local historical catalogue is complete is shorter than the mean recurrence time of individual large faults (1000 years), or at the most comparable. These new findings violate the fundamental assumption of historical probabilistic seismic hazard methods that the historical record is representative of the activity of all the seismogenic sources. The hybrid method we propose uses time-dependent modelling of the major earthquakes and catalogue-based historical probabilistic estimates for all minor events. We assume that the largest earthquakes are characteristic for individual discrete fault segments, model their probability of occurrence by a renewal process and compute the shaking associated with each of them with a simplified procedure. Then we calculate the probability of exceeding a given threshold of peak ground acceleration for specific sites as the aggregate probability of occurrence of large characteristic earthquakes and minor shocks. We apply the method to the Calabrian Arc (Southern Italy) performing the calculations for five major towns. The exposure to seismic hazard of Reggio Calabria, Catanzaro and Vibo Valentia, which locate close to recently activated large faults, decreases with respect to traditional time-independent estimates. On the contrary, an increase of seismic hazard is obtained for Castrovillari, which locates in an area where large faults displaying Holocene activity have been recently recognized but no significant earthquake is reported in the historical catalogue. Cosenza has the highest probability to experience a significant peak ground acceleration with both the new hybrid and the traditional approaches. We wish to stress that the present results should be interpreted only in terms of the differences between the new hybrid and the traditional approaches, not for their absolute values, and that they are not intended to be used for updating or modifying the current national seismic zonation.  相似文献   

18.
New palaeoseismic trenching across the main splay of the Fucino fault system provides evidence for a High Middle Age surface‐faulting episode conceivably associated with a disruptive earthquake, similar to the one that occurred in 1915 (Mw 7.0). The existence of this event, which has already been suggested by some previous studies, implies a shortening of the recurrence interval for Mw 7.0 earthquakes with respect to current knowledge. If we assume that the palaeoseismic Holocene record is complete, this shortening is focused in the historical period, when the Fucino structure sourced three strong earthquakes in only 1.4 ka. A similar clustering of energy release in the recent past is consistent with both palaeoseismological studies on other faults affecting the Apennine divide, and the high GPS strain rates observed in the same chain sectors.  相似文献   

19.
The results of seismic monitoring in the area of the Franz Victoria and Orla trenches in 2011–2013 are discussed in the paper. A seismic catalog of recorded earthquakes with calculated source parameters is given, and the spatial distribution of these earthquakes is characterized. The results of monitoring are compared with the data on historical earthquakes. A cumulative graph of recurrence has been constructed.  相似文献   

20.
Erzurum, the biggest city of Eastern Anatolia Region in the Turkey, is located in Karasu Plain. Karasu Plain, located on the central segment of the Erzurum Fault Zone, is an intermountain sedimentary basin with a Miocene-Quaternary volcanic basement, andesitic-basaltic lava flows and fissure eruptions of basaltic lava. It was filled in the early Quaternary by lacustrine fan-delta deposits. The basin is characterized by NNE-SSW trending sinistral wrench faults on its eastern margin and ENE-WSW trending reverse faults on its southern margin. Both systems of active faults intersect very near to Erzurum, which is considered to be the most likely site for the epicenter of a probable future large earthquake. Historical records of destructive earthquakes, morphotectonic features formed by paleo-seismic events and instrument seismic data of region indicate to a very high regional seismicity. The residential areas of Erzurum are located on thick alluvial fan deposits forming under the control of faults on the central segment of the Erzurum Fault Zone, which is one of the most active fault belts of the East Anatolian Region. Over time, the housing estates of city such as Yenisehir and Yildizkent have been expanded toward to the west and southwest part of Erzurum as a consequence of rapid and massive construction during the last 30 years. Geotechnical investigation has therefore been undertaken the residential areas of city in order to characterize geotechnical properties over the varied lithologies examine the potential for geotechnical mapping and assess the foundation conditions of the present and future settlement areas. The geological field observations and operations have been performed to make the soil sampling and characterize the lateral and vertical changes in thickness of the alluvial deposits in trenches, excavations and deep holes with 6–12 m sections. The soil samples have been subjected to a series of tests under laboratory conditions to obtain physical and mechanical properties. Furthermore, the standard penetration tests have been applied to the soils under field conditions. The geological field observations, geotechnical data and distribution of bearing capacity have been considered for the geotechnical mapping. Based on the geotechnical map, there are five geotechnical zones distinguished in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号