首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
磁暴的发生与环电流的变化密切相关.除了对称环电流外,部分环电流在磁暴的发展过程中也起到了重要的作用,同时部分环电流通过场向电流与极区电离层中的电流形成回路.本文应用INTERMAGNET地磁台网北半球中低纬区域地磁台站数据,对不同强度4个磁暴事件主相和恢复相期间部分环电流和场向电流的磁地方时分布进行了分析和讨论.对于每一个磁暴事件,在低纬地区(地磁纬度约0°—40°N)选用地磁经度上大致均匀的8个台站,通过坐标转换计算平行于磁偶极轴的地磁场水平分量H来分析磁暴期间环电流所引起的磁场扰动;在低纬地区8个台站的基础上增加中纬地区(地磁纬度约40°N—60°N)地磁经度上大致均匀的6个台站,计算地磁坐标系下地磁场东西分量Y来分析磁暴期间场向电流在中低纬地区引起的磁场扰动.结果表明,磁暴主相期间的部分环电流主要作用于磁地方时昏侧和夜侧扇区,并且主相和恢复相期间部分环电流引起的磁场变化随着磁暴级别的增大而增大;磁暴主相期间向下的场向电流多出现在夜侧至晨侧扇区,向上的场向电流多出现在昏侧至午后扇区,且中纬地区向下和向上场向电流的展布范围明显大于低纬地区;恢复相期间弱、中磁暴事件的场向电流呈现与部分环电流相同的减弱趋势,而强、大磁暴事件在恢复相末期场向电流引起的磁场变化明显不同于恢复相的其他时刻,这可能与高纬较强的亚暴活动有关.  相似文献   

2.
There is a paucity of field data to describe the transition in nearshore circulation between alongshore, meandering and rip current systems. A combination of in‐situ current meters and surf zone drifters are used to characterize the nearshore circulation over a transverse bar and rip morphology at Pensacola Beach, Florida in the presence of relatively low energy oblique waves. Current speeds vary in response to the relative wave height ratio (Hs/h), which defines the degree and extent of breaking over the shoal. In the absence of wave breaking the nearshore circulation was dominated by an alongshore current driven by the oblique waves. As waves begin to break across the shoal (0.2<Hs/ h<0.5) the nearshore circulation is characterized by a meandering alongshore current. As conditions became more dissipative (Hs/h>0.5), the meandering current is replaced by an unsteady rip circulation that moves offshore between the shoals before turning alongshore in the direction of wave advance outside the surf zone. The increase in wave dissipation is associated with an increase in very low frequency (VLF) variations in the current speed across the shoal and in the rip channel that caused the circulation to oscillate between an offshore and an alongshore flow. The unsteady nature of the nearshore circulation is responsible for 55% of all surf zone exits under these more dissipative conditions. In contrast, only 29% of the drifters released from the shoal exited the surf zone and bypassed the adjacent shoal with the alongshore‐meandering current. While the currents had a low velocity (maximum of ~0.4 m s‐1) and would not pose a significant hazard to the average swimmer, the results of this study suggest that the transverse bar and rip morphology is sufficient to create an alongshore variation in wave dissipation that forces alongshore meandering and low‐energy rip circulation systems under oblique wave forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
本文讨论了标定电流对标度值测量的影响,并介绍了研制的数字表标度值稳定仪及其使用效果,该仪器标定电流在4-19mA范围可手动选定,电流稳定精度小于0.02mA,电流升,降的转换时间约30s,仪器结构紧凑,操作简便,可以满足地磁台工作需要。  相似文献   

4.
本文选择北京地磁台和广州地磁台水平分量时均值的资料,采用Hibberd方法,分析研究了环电流对地磁场夜间值变化的影响,提出一种近似估计环电流强度的简便方法,这种方法可用于及时监测环电流强度的变化,为短期磁暴预报提供有用的资料和途径。  相似文献   

5.
Sea breezes are characteristic features of coastal regions that can extend large distances from the coastline. Oscillations close to the inertial period are thought to account for around half the kinetic energy in the global surface ocean and play an important role in mixing. In the vicinity of 30°N/S, through a resonance between the diurnal and inertial frequencies, diurnal winds could force enhanced anti-cyclonic rotary motions that contribute to near-inertial energy.Observations of strong diurnal anti-cyclonic currents in water of depth 175 m off the Namibian coastline at 28.6°S are analysed over the annual cycle. Maxima in the diurnal anti-cyclonic current and wind stress amplitudes appear to be observed during the austral summer. Both the diurnal anti-cyclonic current and wind stress components have approximately constant phase throughout the year. These observations provide further evidence that these diurnal currents may be wind forced. Realistic General Ocean Turbulence Model (GOTM) 1-D simulations of diurnal wind forcing, including the first order coast-normal surface slope response to diurnal wind forcing, represent the principal features of the observed diurnal anti-cyclonic current but do not replicate the observed vertical diurnal current structure accurately. Cross-shelf 2-D slice simulations suggest that the first order surface slope response approximation applies away from the coast (>140 km). However, nearer to the coast, additional surface slope variations associated with spatial variations in the simulated velocity field (estimated from Bernoulli theory) appear to be significant and also result in transfer of energy to higher harmonics. Evidence from 3-D simulations at similar latitude in the northern hemisphere suggests that 3-D variations, including propagating near-inertial waves, may also need to be considered.  相似文献   

6.
Two very high-frequency radars (VHFR) operating on the Opal coast of eastern English Channel provided a nearly continuous 35-day long dataset of surface currents over a 500 km2 area at 0.6–1.8 km resolution. Argo drifter tracking and CTD soundings complemented the VHFR observations, which extended approximately 25 km offshore. The radar data resolve three basic modes of the surface velocity variation in the area, that are driven by tides, winds and freshwater fluxes associated with seasonal river discharge. The first mode, accounting for 90% of variability, is characterized by an along-shore flow pattern, whereas the second and third modes exhibit cross-shore, and eddy-like structures in the current velocity field. All the three modes show the dominant semi-diurnal variability and low-frequency modulation by the neap-spring tidal cycle. Although tidal forcing provides the major contribution to variability of local currents, baroclinicity plays an important role in shaping the 3D velocity field averaged over the tidal cycle and may strongly affect tracer dynamics on larger time scales. An empirical orthogonal function (EOF) decomposition and a spectral rotary analysis of the VHFR data reveal a discontinuity in the velocity field occurring approximately 10 km offshore which was caused by the reversal in the sign of rotation of the current vector. This feature of local circulation is responsible for surface current convergence on ebb, divergence on flood and strong oscillatory vertical motion. Spectral analysis of the observed currents and the results of the Agro drifter tracking indicate that the line of convergence approximately follows the 30-m isobath. The most pronounced feature of the radar-derived residual circulation is the along-coast intensification of surface currents with velocity magnitude of 0.25 m/s typical for the Regions of Freshwater Influence (ROFI). The analysis has provided a useful, exploratory examination of surface currents, suggesting that the circulation off the Opal coast is governed by ROFI dynamics on the hypertidal background.  相似文献   

7.
Abstract

An analytical model is constructed for the generation of baroclinic Rossby waves by a vorticity source in the presence of a semi-circular boundary. The vorticity source is used to represent the effect of the Agulhas retroflection to the south of Southern Africa. The displacement of the interface between the two layers of the model ocean consists of quantized waves near the coast and a train of Rossby waves drifting westward further offshore.  相似文献   

8.
地磁静日Y分量季节变化的物理讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
对电离层E层发电机Sq电流系和赤道区晨昏侧F层电流共同作用的地磁效应进行了定性分析和定量估计,并解释了静日地磁Y分量日变化形态在冬、夏季近于反相的现象.所用物理机制能同样说明NmaxF2赤道异常驼峰每日出现、消失时间的季变化.  相似文献   

9.
地电阻率仪器在工作中容易出现无电流、电流不稳等故障现象,不易排查维修.通过对仪器工作原理和供电回路过程进行研究,发现供电回路中间仪器的内部或外部各接头接触不良是造成上述现象的主要因素.根据存在的问题,洛阳地震台研制出供电回路故障检测板.该检测板可利用其继电器上LED灯的工作状态和动作时序,快速查找、排除相关供电回路故障...  相似文献   

10.
华北地区地电暴时GIC及涡旋电流响应分析   总被引:4,自引:0,他引:4       下载免费PDF全文
章鑫  杜学彬  刘君 《地球物理学报》2017,60(5):1800-1810
通过地电场台址近地表介质电阻率和地电场值计算大地电流,从大地电流场中分离出涡旋电流;根据平面波理论和水平导电层模型,使用地磁暴观测数据在频率域计算地磁感应电场(GIE),由GIE计算地磁暴感应电流(GIC).计算结果与实测值对比分析表明:GIE计算结果与实测地电暴具有很好的相位一致性;GIC涡旋中心相对地电暴涡旋中心存在向SE漂移约3°的现象;磁暴时地磁场Z分量的幅值分布图中极大值区域与涡旋中心重合,可能是GIC涡旋中心偏移的原因.另外,根据电磁感应原理提出的等效环电流模型,在一定程度上解释了涡旋大地电流的形成机制.本项工作可应用于地磁观测与地电观测的相互校正,同时有助于认识地电暴对大地电流分布的影响.  相似文献   

11.
Interactions between waves, current, mud and turbulence are very complicated in the coastal and estuarine turbid waters. It is still necessary to improve our understanding of the fundamental physical processes governing the cohesive sediment transport in the coastal and estuarine waters. A numerical model is developed to study the interactions among waves, current, and mud. An eddy viscosity model for wave and current is proposed in order to close the equations of wave motion or of current motion in a combined flow, respectively. The equations of mud transport are derived based on the visco-elastic properties of mud. Coupling the equations of wave motion or of current motion for water layer with those of mud layer can give (1) wave height; (2) distributions of current velocities in the water layer; (3) distributions of transport velocities at the water–mud interface; and (4) distributions of mass transport velocities within the mud layer. These modeled results are in a reasonable agreement with experimental results. Results suggest that (1) the rate of wave attenuation increases in the opposing currents (currents against in the direction in which the waves propagate) and decreases in the following currents (currents in the same direction as that in which the waves propagate); (2) the opposing currents would have more significant effects on the rate of wave height attenuation than the following currents; (3) the effect of current on the rate of wave attenuation on the muddy bottom is larger than that on the rigid bottom; (4) mud transport rate increased in the following currents but decreased in the opposing currents; and (5) the rate of wave height attenuation on the mud bottom is one order of magnitude larger than that on the rigid bottom.  相似文献   

12.
投弃式海流电场剖面仪研制   总被引:4,自引:1,他引:3       下载免费PDF全文
本文分析了投弃式海流电场剖面仪的发展,简介了海流感生电场的基本原理,提出了投弃式海流电场剖面仪的技术方案.根据投弃式海流电场剖面仪的实际需求,研发了XCP海流电场传感器,并通过XCP探头的自旋转(16 r/s),实现了将海流电场信号AM调制并频移至海流电场传感器的超低噪声频段,解决了在高噪声背景下快速测量纳伏级微弱海流电场信号.设计实现了XCP探头前端弱信号处理电路,对海流电场微弱信号进行滤波提取的同时可实现对海流电场同向分量进行硬件电路补偿,在一定程度上克服了XCP探头下沉引起感生电场的强干扰.在XCP探头内部采用SoPC技术实现对海流电场信号、罗盘线圈信号和温度信息的快速测量及其数字化处理,并将数字信息以UART协议及LVDS物理层数传方式发送到XCP浮筒端.开创了长度2 km、直径0.1 mm漆包线动态数据传输技术,解决了XCP探头和XCP浮筒之间的数字化数据传输问题.根据XCP探头所采集的海流电场信号与罗盘线圈信号的同相分量In、正交分量Qn、基线量Bn数据,研究了XCP探测方法,从而计算出了海流的东向与北向相对速度分量VEr、VNr.采用所研发的XCP,在我国南海海域首次采集到海面至海下千米深度的XCP海流电场信息和海洋温度信息.  相似文献   

13.
Results from numerical simulations of idealised, 2.5-dimensional Boussinesq, gravity currents on an inclined plane in a rotating frame are used to determine the qualitative and quantitative characteristics of such currents. The current is initially geostrophically adjusted. The Richardson number is varied between different experiments. The results demonstrate that the gravity current has a two-part structure consisting of: (1) the vein, the thick part that is governed by geostrophic dynamics with an Ekman layer at its bottom, and (2) a thin friction layer at the downslope side of the vein, the thin part of the gravity current. Water from the vein detrains into the friction layer via the bottom Ekman layer. A self consistent picture of the dynamics of a gravity current is obtained and some of the large-scale characteristics of a gravity current can be analytically calculated, for small Reynolds number flow, using linear Ekman layer theory. The evolution of the gravity current is shown to be governed by bottom friction. A minimal model for the vein dynamics, based on the heat equation, is derived and compares very well to the solutions of the 2.5-dimensional Boussinesq simulations. The heat equation is linear for a linear (Rayleigh) friction law and non-linear for a quadratic drag law. I demonstrate that the thickness of a gravity current cannot be modelled by a local parameterisation when bottom friction is relevant. The difference between the vein and the gravity current is of paramount importance as simplified (streamtube) models should model the dynamics of the vein rather than the dynamics of the total gravity current. In basin-wide numerical models of the ocean dynamics the friction layer has to be resolved to correctly represent gravity currents and, thus, the ocean dynamics.  相似文献   

14.
Abstract

This paper investigates the generation of linear, baroclinic Rossby waves by an imposed current distribution, in a reduced gravity ocean, both with and without an eastern coast. A zonal current is impulsively applied and maintained along the northern edge of the domain of solution. Using Green's function techniques, analytical solutions are found, and these are evaluated for small times. Numerical solutions are obtained for larger times. The upper layer depth field consists of a transient response, due to the sudden application of the current. Maintenance of the current causes a response which is singular along the line of imposed non-zero h y. The interior field decays with time (this is shown asymptotically). The parameters used are appropriate for the mid-latitude North Pacific, and the results are relevant to sudden transport changes in the North Pacific Current.  相似文献   

15.
ZHANG Xin  DU Xue-bin 《地震地质》1979,42(4):909-922
The Tancheng-Lujiang Fault is an important tectonic boundary in eastern China. The southern part of the Tancheng-Lujiang Fault is located south of Baohai Bay, which is an area with a dense population and frequent economic activities. It is worth conducting an in-depth study on the southern section of the fault, especially in the aspect of geophysical exploration and seismicity analysis. Electrical structure detection is an important way to interpret the structural activity of the fault. It can also analyze and explore the influence of the fault on the physical properties of both sides of the fault based on the geoelectrical observation data. In the study area, there are densely distributed stations of geoelectrical observation, including 27 fixed stations distributed along the fault zone from the southern Baohai Bay to Nanjing, Jinagsu Province. The continuous observations and recording of these stations provide a favorable condition for studying the tectonic activity of Tancheng-Lujiang Fault. In the long-term observation of geoelectric observation network, the geoelectric field measurements of long- and short-spacing measuring tracks in the same direction at the same station vary significantly because of the effect of long-term stability of the observation system and the environment near the electrodes. Also, the data curve changes complicatedly and seems to be in a mess. However, there are three basic facts of observation existing in the geoelectric field change: 1)The variation amplitude of the geoelectric field changes observed on the long- and short-spacing measuring tracks in the same direction at the same station(including tidal response changes and the rapid change events such as short periods or pulses)is the same or very close; 2)The Ex and Ey components at the same station always show the same variation in the same time period, or the opposite, which is related to the anisotropy of the medium under the station; 3)The rapid changes of the minute values of the geoelectric field observed at different stations are synchronous in a wide spatial area. In this study, in order to take full advantage of these basic facts, we only use the amplitude variation of geoelectric field with time. Based on the data of 27 geoelectric field observation stations in the study area, we used the current density vector and streamline to characterize telluric current with its divergence and vorticity calculated in the southern Tancheng-Lujiang Fault in this paper. The results show that: 1)the telluric current shows the phenomenon of opposite directional differentiation in the southern part of the fault zone, the direction of the current vector is NE on the east side, while the direction is NW to SW on the west side; (2)The divergence and vorticity of telluric current also show the differentiation phenomenon along the fault, the positive/negative maximum of vorticity and divergence mainly occurs near the fault zone and the direction of alternating positive and negative gradient(or negative gradient)of vorticity or divergence is consistent with the strike of the fault zone. By analyzing the current superposition simulation results and comparing them with previous studies, an interpretation model of the above phenomenon is established in this paper. The results agree with previous studies on the electrical structure of this region. Besides, the results that telluric current differentiates along the fault zone may improve our understanding of the process of deep electrical and material migration.  相似文献   

16.
Variability in water-exchange time between Tokyo Bay and the Pacific Ocean during winter is investigated based on the results of intensive field observation from November 2000 to March 2001. Water-exchange time between Tokyo Bay and the Pacific Ocean during winter mainly depends on the strength of northerly monsoon, being about 16 days under the weak monsoon and about 12 days under the strong monsoon. Moreover, it becomes longer by about 1 day in spring tide and shorter in neap tide due to the coupling effect of estuarine circulation and vertical mixing. Water-exchange time also varies depending on the open-ocean condition. When the warm water mass approaches from the Pacific Ocean to the mouth of Tokyo Bay through the eastern channel of Sagami Bay, which connects Tokyo Bay and the Pacific Ocean, water-exchange time becomes longer by about 2 days because the warm water mass is blocked in the surface layer at the bay mouth. On the other hand, when the warm water mass approaches to the mouth of Tokyo Bay through the western channel of Sagami Bay, water-exchange time becomes shorter by about 1 day because the warm water mass intrudes into the middle or lower layers of Tokyo Bay. Such different behavior of warm water mass at the mouth of Tokyo Bay is due to the difference in density of approaching warm water masses, that is, the density of the warm water mass through the eastern channel is smaller than that of the warm water mass through the western channel of Sagami Bay.Responsible Editors: Yens Kappenberg  相似文献   

17.
处于高纬向日面的极隙区是太阳风能量、动量和质量可以直接进入地球磁场并到达地球的近地空间的区域。本文简要介绍了极隙区的观测和研究,综述了极隙区的粒子沉降、场向电流、等离子体对流和电离层电流的特征。  相似文献   

18.
减小直流输电对地磁观测影响的几种办法   总被引:2,自引:0,他引:2  
随着经济建设的飞速发展,地震监测环境的保护越来越困难。各种干扰因素不断出现,有些干扰影响范围较小,可以设法避开;有些干扰影响范围较大,几乎无法躲避。直流输电对地磁观测产生的干扰其影响范围特别广,幅度特别大。我国于1989年建成了葛洲坝至上海南桥的±500KV~200A高压直流输电工程。2002年12月份从三峡至武进政平的±500KV~3000A直流输电工程也开始进入测试阶段,并于2003年7月开始正式运行。随着“西电东送”战略的确定,以后会有更多条超高压直流输电线路将建成(龚大卫等,2000;陈红军等,2001;吴元熙等,2000)。其中三峡至武进政平的…  相似文献   

19.
章鑫  孙君嵩  钱银苹  刘君 《地震》2020,40(4):169-182
地电场是联系空间Sq电流体系、 地球表面电流和内部电流活动的地球物理量, 它包含了空间电流系变化产生的大地电(流)场和区域环境变化等引起的自然电场。 通过研究青藏高原东北缘的天祝台阵5个固定地电场台站连续10年观测数据, 得出该区域地电场变化具有明显的366±(<1) d周期。 且大地电流矢量方向有明显的季节变化, 每半年改变一次方向, 方向变化时间一般为每年4月和9~10月; 大地电流矢量的强度变化也具有周期性。 通过建立简单模型进行定量化分析, 认为地电场季节变化主要受到Sq年变和区域气候环境的耦合作用, 主要依据为地电场长趋势变化与电离层Sq电流年变化趋势吻合。 基于区域性气候、 冻融深度等季节性变化模型开展计算, 认为气温导致了地下浅层介质电性结构、 电极附近电位方向的变化, 影响了地电场的长趋势变化。 本文结果有助于认识超低频地电场年变周期特点及其原因, 并探索其应用前景。  相似文献   

20.
The western boundary current in the southern South China Sea (SCS) in summer does not always flow northward along the Indo-China Peninsula, it leaves the southeast coast of peninsula around 10–14°N, forming a strong eastward jet called “Vietnam Coastal Current” or “Southeast Vietnam Offshore Current” (SVOC). It is known that the wind stress curl is the major driving factor responsible for this current. In this paper, we carry on the study of the separation position, strength and forming time of this current. A connected single-layer/two-layer model is employed here to study these problems. According to the numerical experiments and analyses of the vorticity dynamics, it is found that, the local wind stress curl (including the northern cyclonic and the southern anticyclonic wind forcing curl), the nonlinear term, the topographic effect, the planetary vorticity advection and the water exchange between the SCS and Java Sea via the Sunda Shelf have an important effect on both the position where this current leaves the coast and its strength; when there is an inflow via the Sunda Shelf, the current is stronger and the separation position is more northward; whereas the water stratification, the coastline and the inflow of Kuroshio have little effect on its separation. In fact, two opposite flowing currents, the northward SVOC and the southward western branch of the cyclonic eddy to its north near the Indo-China Peninsula, collide with each other, and the strength of these two currents determine the separation position of the SVOC. Origin of the SVOC may be driven by the local negative wind stress curl in the middle SCS in mid-spring, this current flows along the coast of the Indo-China Peninsula and leaves the coast at high latitude, flowing northeastward; once the local positive wind stress curl near the northern Indo-China Peninsula or the negative one near the southern Indo-China Peninsula is large enough, this current will begin to leave the coast at low latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号