首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have studied SmNd systematics in pyroxene and phosphate mineral separates of Angra dos Reis. A pyroxene-phosphate internal isochron age ofT2 = 4.55 ± 0.04AE is obtained, in excellent agreement with reported Pb-Pb ages.142Nd/144Nd ratios in pyroxene samples are systematically larger than those in phosphates by 6 parts in 105. This variation is tentatively assigned to a radiogenic contribution from extinct146Sm. Fission xenon components in pyroxene and phosphate separates are characterized by discrete ratios of fission/spallation and evidence is presented for a third ratio in celsian. It is shown that this characteristic is due to a close association of244Pu with the light REE. Computed ratios244Pu/Nd are the same in pyroxene and phosphate separates, but244Pu/238U and244Pu/232Th ratios are not. Taking the fission xenon retention age to be 4.55 AE, we obtain an abundance ratio244Pu/Nd= 1.5 × 10?4 (or an atomic ratio244Pu/150Nd= 1.6 × 10?3) at this time and in the region of the solar system where the Angra dos Reis parent body formed. The exposure age of Angra dos Reis, as obtained by the81Kr-83Kr method is55.5 ± 1.2m.y. Neutron capture during the 55.5-m.y. exposure to cosmic rays increased the ratio150Sm/149Sm in Angra dos Reis by 6 parts in 104.  相似文献   

2.
Fossil fission tracks have been found in a coarse-grained white inclusion of the Allende chondrite. Tracks are present in excess of those produced by238U spontaneous fission and cosmic rays. The ratio of excess tracks to238U tracks is ~20, intermediate to ratios previously observed in meteorites but much lower than might be expected in light of the high initial244Pu/U ratio measured in these inclusions from Xe isotope ratios.  相似文献   

3.
The times at which phyllosilicate matrix and euhedral olivines became associated have been determined for five C2 meteorites. The ages, calculated from fission track densities on crystal surfaces, are based on an initial244Pu/238U ratio in the matrix material of 0.0154 at 4.6 b.y., and range from 4.22 b.y. for Nogoya to 4.42 b.y. for Murray. Unless the initial244Pu/238U ratio was less than 0.004, the meteorites cannot have existed in their present form for 4.6 × 109 yr. The measured ages place limits on the time when pre-compaction effects such as micrometeorite craters and solar flare tracks were produced, and they may approximately date the formation of the olivine crystals themselves.  相似文献   

4.
Xenon extracted in step-wise heating of lunar breccia 14 301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than 244Pu. Verification that this component is in fact due to the spontaneous fission of extinct 244Pu comes from the derived spectrum which is similar to that observed from artificially produced 244Pu. It thus appears that 244Pu was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon.  相似文献   

5.
Etch rates and etchable lengths of cosmic ray tracks in meteoritic crystals have been used by several workers to derive the charge spectrum of ancient cosmic rays. This is done by comparing the fossil cosmic ray track record with fresh accelerator-produced calibration tracks. These calibration tracks are generally produced at room temperature, while meteorites spend a high proportion of their lifetimes orbiting at large distances from the Sun ( 3–5 AU) and are, consequently, at much lower temperatures (typically 100–150 K) during most of their cosmic ray exposure ages. We have irradiated crystals of apatite, olivine, enstatite and diopside held at 77, 293, 473 and 573 K, with 2 MeV/nucleon81Br ions, and then etched them. We find that their track etching properties are dependent upon the temperature of the mineral during registration. The track etch velocity generally increases with registration temperature up to 300 or 500 K (the upper limit depending upon the type of crystal). Our results also indicate that the annealing sensitivity of fission tracks in fluorapatite may be influenced by the registration temperature. This temperature dependence has important implications not only for cosmic ray particle identification but also for fission track dating of meteorites in view of the fact that the meteorite parent bodies were at elevated temperatures at the beginning af their life when244Pu fission tracks were being generated abundantly.  相似文献   

6.
Nuclear particle tracks were studied in various phases from the Brachina meteorite, which was classified until recently as a chassignite. Fission tracks due to the decay of244Pu(T12 = 82m.y.) were observed and indicate that Brachina formed ~ 4.5 b.y. ago in a parent body which was most probably asteroidal in size. Contrary to what has been previously suggested [7], there is no need to postulate a Martian origin for this meteorite. This conclusion is supported by independent evidence obtained by other groups.  相似文献   

7.
Nuclear tracks were studied in olivine and merrillite (phosphate previously called whitlockite) from the Marjalahti pallasite. The merrillite contains an important fission contribution due mainly to the spontaneous decay of now extinct244Pu. The U contents of 29 merrillite grains range from 60 to 140 ppb (median value: 85 ppb). Assuming a reasonable fractionation temperature of ~ 1750 K for the pre-pallasitic material, a lower limit of ~ 5 K/Myr is obtained for the cooling rate, in strong contrast with the previous metallographic result (~ 0.5 K/Myr). This disagreement, together with those observed in the case of mesosiderites, strengthens the need for a revision of the metallographic method of retracing the cooling histories of meteorites, as suggested by Narayan and Goldstein [31].  相似文献   

8.
The coarse-grained, Ca-rich inclusions in the Allende meteorite are the highest-temperature condensates from the cooling solar nebula and, as such, the oldest solid objects in the solar system. All refractory elements with condensation points above the accretion temperature of the inclusions whose concentrations in them have been measured are seen to be present in the inclusions in unfractionated proportion to one another relative to C1 chondrites when data are averaged for a large number of inclusions. Observational data for U and theoretical data for both U and Pu suggest that these elements exhibited refractory behavior in the solar nebula. An experiment is proposed in which fissiogenic Xe and U contents are measured in a suite of these inclusions to obtain the244Pu/238U ratio of the solar system at the time of initial condensation with an uncertainty of ±15%.  相似文献   

9.
The relationships between the major terrestrial volatile reservoirs are explored by resolving the different components in the Xe isotope signatures displayed by Harding County and Caroline CO2 well gases and mid-ocean ridge basalts (MORB). For the nonradiogenic isotopes, there is evidence for the presence of components enhanced in the light 124–128Xe/130Xe isotope ratios with respect to the terrestrial atmosphere. The observation of small but significant elevations of these ratios in the MORB and well gas reservoirs means that the nonradiogenic Xe in the atmosphere cannot be the primordial base composition in the mantle. The presence of solar-like components, for example U–Xe, solar wind Xe, or both, is required.For radiogenic Xe generated by decay of short-lived 129I and 244Pu, the 129Xerad/136Xe244 ratios are indistinguishable in MORB and the present atmosphere, but differ by approximately an order of magnitude between the MORB and well gas sources. Correspondence of these ratios in MORB and the atmosphere within the relatively small uncertainties found here significantly constrains possible mantle degassing scenarios. The widely held view that substantial early degassing of 129Xerad and 136Xe244 from the MORB reservoir to the atmosphere occurred and then ended while 129I was still alive is incompatible with equal ratios, and so is not a possible explanation for observed elevations of 129Xe/130Xe in MORB compared to the atmosphere. Detailed degassing chronologies constructed from the isotopic composition of MORB Xe are therefore questionable.If the present estimate for the uranium/iodine ratio in the bulk silicate Earth (BSE) is taken to apply to all interior volatile reservoirs, the differing 129Xerad/136Xe244 ratios in MORB and the well gases point to two episodes of major mantle degassing, presumably driven by giant impacts, respectively  20–50 Ma and  95–100 Ma after solar system origin assuming current values for initial 129I/127I and 244Pu/238U. The earlier time range, for degassing of the well gas source, spans Hf–W calculations for the timing of a moon-forming impact. The second, later impact further outgassed the upper mantle and MORB source. A single event that degassed both the MORB and gas well reservoirs at the time of the moon-forming collision would be compatible with their distinct 129Xerad/136Xe244 ratios only if the post-impact iodine abundance in the MORB reservoir was about an order of magnitude lower than current estimates. In either case, such late dates require large early losses of noble gases, so that initial inventories acquired throughout the Earth must have been substantially higher.The much larger 129Xerad/136Xe244 ratio in the well gases compared to MORB requires that these two Xe components evolve from separate interior reservoirs that have been effectively isolated from each other for most of the age of the planet, but are now seen within the upper mantle. These reservoirs have maintained distinct Xe isotope signatures despite having similar Ne isotope compositions that reflect similar degassing histories. This suggests that the light noble gas and radiogenic Xe isotopes are decoupled, with separate long-term storage of the latter. However, without data on the extent of heterogeneities within the upper mantle, this conclusion cannot be easily reconciled with geophysical observations without significant re-evaluation of present noble gas models. Nevertheless the analytic evidence that two different values of 129Xerad/136Xe244 exist in the Earth appears firm. If the uranium/iodine ratio is approximately uniform throughout the BSE, it follows that degassing events from separate reservoirs at different times are recorded in the currently available terrestrial Xe data.  相似文献   

10.
The decay constantf238) for the spontaneous fission of238U was re-determined by means of a man-made uranium glass of known age (126 yr). The spontaneous U fission tracks that had accumulated since the date of manufacture were counted on internal faces of the glass with an error of less than 1.7%. No thermal annealing of the spontaneous tracks was observed. The U content was determined by induced fission tracks. The value obtained forλf238 is(8.57 ± 0.42) × 10?17yr?1. Main sources of error are the date of glass melting and the determination of the thermal neutron dose.  相似文献   

11.
We report on extensive isotopic studies of Pb, Sr and Xe and on chemical abundance measurements of K, Rb, Sr, Ba, Nd, Sm, U and Th for total meteorite and mineral separates of the Angra dos Reis achondrite. U-Pb, Th-Pb and Pb-Pb ages are concordant at 4.54 AE for the total meteorite and for high-purity whitlockite in Angra dos Reis. This establishes Angra dos Reis as an early planetary differentiate which has not been disturbed for these systems since 4.54 AE ago. Measured87Sr/86Sr in pyroxene and whitlockite for Angra dos Reis (ADOR) are distinctly below BABI by two parts in 104 and only one part in 104 above the lowest87Sr/86Sr (ALL) measured in an Allende inclusion. The difference in ADOR-ALL corresponds to an interval of condensation in the solar nebula of ~3 m.y. If26Al was the heat source for the magmatism on the parent planets of Angra dos Reis and the basaltic achondrites (BABI) then the relatively large difference in87Sr/86Sr, BABI - ALL, must be the result of planetary evolution rather than condensation over ~10 m.y. Xe isotopic measurements confirm the presence of large amounts of244Pu-produced fission Xe and show that244Pu was enriched in the whitlockite relative to the pyroxene by a factor of ~18. We present chemical element enrichment factors between the whitlockite and the fassaitic pyroxene in Angra dos Reis. The enrichment factors demonstrate close analogy between the rare earth elements and their actinide analogs. The enrichment factor for Pu is intermediate to the enrichment factors of Nd and Sm.  相似文献   

12.
We have used in-situ pumps which filter large volumes of sea water through a 1 μm cartridge prefilter and two MnO2-coated cartridges to obtain information on dissolved and particulate radionuclide distributions in the oceans. Two sites in the northwest Atlantic show subsurface maxima of the fallout radionuclides137Cs,239,240Pu and241Am. Although the processes of scavenging onto sinking particles and release at depth may contribute to the tracer distributions, comparison of predicted and measured water column inventories suggests that at least 35–50% of the Pu and241Am are supplied to the deep water by advection.The depth distributions of the naturally occurring radionuclides232Th,228Th and230Th reflect their sources to the oceans.232Th shows high dissolved concentrations in surface waters, presumably as a result of atmospheric or riverine supply. Activities of232Th decrease with depth to values 0.01 dpm/1000 l.228Th shows high activities in near surface and near bottom water, due to the distribution of its parent,228Ra. Dissolved230Th, produced throughout the water column from234U decay, increases with depth to 3000 m. Values in the deep water (> 3000 m) are nearly constant ( 0.6–0.7 dpm/1000 l), and the distribution of this tracer (and perhaps other long-lived particle-reactive tracers as well) may be affected by the advection inferred from Pu and241Am data.The ratio of particulate to dissolved activity for both230Th and228Th is 0.15–0.20. This similarity precludes the calculation of sorption rate constants using a simple model of reversible sorption equilibrium. Moreover, in mid-depths228Th tends to have a higher particulate/dissolved ratio than230Th, suggesting uptake and release of230Th and228Th by different processes. This could occur if228Th, produced in surface water, were incorporated into biogenic particles formed there and released as those particles dissolved or decomposed during sinking.230Th, produced throughout the water column, may more closely approach a sorption equilibrium at all depths.230Th,241Am and239,240Pu are partitioned onto particles in the sequence Th > Am > Pu with 15% of the230Th on particles compared with 7% for Am and 1% for Pu. Distribution coefficients (Kd) are 1.3–1.6 × 107 for Th, 5–6 × 106 for Am and 7–10 × 105 for Pu. The lower reactivity for Pu is consistent with analyses of Pu oxidation states which show 85% oxidized (V + VI) Pu. However, theKd value for Pu may be an upper limit because Pu, like228Th, may be incorporated into particles in surface waters and released at depth only by destruction of the carrier phase.  相似文献   

13.
Murchison Bay is a shallow embayment in the north-western part of Lake Victoria, strongly influenced by urban pollution from the Ugandan capital Kampala. Two stations, representing the semi-enclosed innermost part of the bay and the wider outer part of the bay, were sampled in the period from April 2003 to March 2004, in order to assess the phytoplankton community and the nutrient status in the bay. Murchison Bay was highly eutrophic with average concentrations (n=25) of total phosphorous >90 μg L−1 and total nitrogen >1100 μg L−1 in the inner part of the bay. The phytoplankton community was dominated by a variety of cyanobacterial species and diatoms. Cyanobacteria were dominant in the whole bay, whereas diatoms were more abundant in the outer part of the bay. Moreover, the proportion of N-fixing species like Anabaena sp. was higher in the outer part of the bay, whereas species like Microcystis sp. were more abundant in the inner part of the bay. The phytoplankton community, especially in the outer part of the bay, may be influenced by light limitation. Low NO3-N concentrations in the bay may also indicate a possible N-limitation, thus favouring growth of N-fixing cyanobacteria. The open bay is, however, a complex system, and additional environmental factors and loss processes most likely affect the phytoplankton community.  相似文献   

14.
We present osmium isotopic results obtained by sequential leaching of the Murchison meteorite, which reveal the existence of very large internal anomalies of nucleosynthetic origin (ε184Os from ? 108 to 460; ε186Os from ? 14.1 to 12.6; ε188Os from ? 2.6 to 1.6; ε190Os from ? 1.7 to 1.1). Despite these large variations, the isotopic composition of the total leachable osmium (weighted average of the leachates) is close to that of bulk chondrites. This is consistent with efficient large-scale mixing of Os isotopic anomalies in the protosolar nebula. The Os isotopic anomalies are correlated, and can be explained by the variable contributions of components derived from the s, r and p-processes of nucleosynthesis. Surprisingly, much of the s-process rich osmium is released by relatively mild leaching, suggesting the existence of an easily leachable s-process rich presolar phase, or alternatively, of a chemically resistant r-process rich phase. Taken together with previous evidence for a highly insoluble s-process rich carrier, such as SiC, these results argue for the presence of several presolar phases with anomalous nucleosynthetic compositions in the Murchison meteorite. The s-process composition of Os released by mild leaching diverges slightly from that released by aggressive digestion techniques, perhaps suggesting that the presolar phases attacked by these differing procedures condensed in different stellar environments. The correlation between ε190Os and ε188Os can be used to constrain the s-process 190Os/188Os ratio to be 1.275 ± 0.043. Such a ratio can be reproduced in a nuclear reaction network for a MACS value for 190Os of ~ 200 ± 22 mbarn at 30 keV. More generally, these results can help refine predictions of the s-process in the Os mass region, which can be used in turn to constrain the amount of cosmoradiogenic 187Os in the solar system and hence the age of the Galaxy.We also present evidence for extensive internal variation of 184Os abundances in the Murchison meteorite. A steep anti-correlation is observed between ε184Os and ε188Os. Since 184Os is formed uniquely by the p-process, this anti-correlation cannot be explained by variable addition or subtraction of s-process Os to average solar system material. Instead, this suggests that p-process rich presolar grains (e.g., supernova condensates) may be present in meteorites in sufficient quantities to influence the Os isotopic compositions of the leachates. Nevertheless, 184Os is a low abundance isotope and we cannot exclude the possibility that the measured anomalies for this isotope reflect unappreciated analytical artifacts.  相似文献   

15.
The nature of sedimentation and mixing are examined in abyssal red clay sediments from the North Central Pacific using three types of indicators: 230Th/232Th, organic14C, and137Cs and 239.240Pu.230Th/232Th analysed revealed that the clay sedimentation rate in three box cores collected within a 50 km radius was less than 1.0 mm/103 yr. However, analyses of the organic carbon in thin layers of sediment revealed that radiocarbon was present much deeper in the cores (down to 20 cm) than was expected from the 230Th/232Th distribution. In addition, both the stratigraphy and inventory of radiocarbon was significantly different between box cores. The distributions and inventories of137Cs and239.240Pu were similar to that found for radiocarbon, further illustrating the spatial variability of radionuclides in oligotrophic North Pacific red clays. These data suggest that bioturbational processes are important for transporting organic carbon down into the sediment column.  相似文献   

16.
Whitlockites have been extracted from the Bondoc mesosiderite and found to contain ~(0.7–2.7) × 106 cm?2 of spontaneous-fission tracks. Thermal-neutron irradiation of these crystals along with terrestrial apatite age standards, and measurement of the track densities so induced, lead to the determination of a whitlockite track-retention age of 2.68 (±0.30) Gyr for Bondoc, which is essentially independent of the initial (Pu/U) ratio.This young age is in qualitative, and, within the experimental uncertainties, in quantitative, agreement with the slow cooling rates determined for many mesosiderites [1,2] and specifically for Bondoc [6] from Ni distributions in the metal phase.  相似文献   

17.
Analyses are presented of137Cs,238Pu, and239,240Pu, in relation to depth in sediment, in 21 gravity cores. These cores span the ranges of times 1964–1975, and of water depths 12–2000 m; they come from three distinct sedimentation areas off the northeast coast of the United States. Although the ranges of total sediment inventories of239,240Pu and of137Cs from the various areas hardly overlap, the range of ratios of the inventories of these two nuclides is probably the same in all the areas. In the shallow-water cores the239,240Pu/137Cs ratio regularly diminishes with depth in the core, and a tendency is seen for curves of this function to have similar slopes in each area; ratios of238Pu/239,240Pu show no change with depth in these shallow-water cores. In the deeper-water cores, the239,240Pu/137Cs ratio shows no systematic change with depth, but sometimes the238Pu/239,240Pu ratio shows a minimum at the sediment surface, and is much higher deeper in the cores. We believe that these phenomena can be explained in terms of a complicated bioturbational process moving the nuclides, together, down into the sediments, of chemical resolubilization, at depth, of plutonium only, and of its subsequent upward translocation in the interstitial solution. Some re-immobilization of plutonium near the sediment surface is implied, and a mechanism is suggested for this, based on displacement of plutonium from organic complexes by the increasing concentrations, in upper layers of the sediment, of re-oxidized dissolved iron.  相似文献   

18.
From GEOSECS stations, largely, the 1974 distributions of Pu and of137Cs are described in the Pacific Ocean north of about 20°S latitude. Changes in some of these distributions are described from 1978 cruises by the authors.The Pacific exhibited, everywhere, a shallow subsurface layer of Pu-rich water with its concentration maximum at about 465 m in 1974; over a large portion of the central North Pacific a second layer of Pu-labelled water, less concentrated than the shallow layer, lay just above the bottom. Similar features were not observed in the case of137Cs.The inventories of both Pu and137Cs in the water column at most 1974 stations are substantially greater than those to be expected from world-wide fallout alone; these inventory excesses appear to be attributable to close-in fallout, but only if the ratio Pu/137Cs in this source was much higher than in world-wide fallout. The North Pacific mean ratio of the inventories is 2.2 times that observed in world-wide fallout.Resolubilization of Pu both from sinking particles and from sediments explains peculiarities of its depth distributions.There is little evidence for tracer movement by sliding downward along density surfaces;137Cs appears to have moved to depth by downmixing at the edge of the Kuroshio, and then moved horizontally and upward alongσt contours. The shallow Pu-rich layer shows no coordination with density, salinity or O2 isopleths. The deep Pu-rich layer is restricted to a narrow range of O2 concentrations that confirm its origin in the Aleutian Trench and rapid spread southward and laterally. Near-bottom circulation processes have been much more active than here-to-fore described.  相似文献   

19.
Mass spectrometric analyses of low levels of global fallout plutonium separated from Atlantic marine samples have differentiated fallout239Pu and240Pu in aquatic samples for the first time. The results show no single characteristic240Pu/239Pu ratio in marine samples; the observed range is from 0.11 to 0.24 on an atom basis. There are indications that differences exist in the chemical or physical form of plutonium from atmospheric fallout in Atlantic surface water and that selective concentration in surface organisms is occurring. No single240Pu/239Pu value is found in pelagic sediments collected from different depths and locations. Discounting sources other than fallout, our results show that the plutonium deposited at any given time since atmospheric testing began may have carried a unique240Pu/239Pu tag. This label may be extremely useful to trace fallout plutonium through biogeochemical cycles.  相似文献   

20.
Unsupported226Ra (t12 = 1620years) in marine sediments can provide a basis for measuring rates of accumulation of the order of centimeters per thousand years. The excess radium apparently enters the sediments incorporated in phytoplankton. The sensitivity of the method depends upon the initial value of the unsupported226Ra and of the value of230Th, a parent of226Ra, in the sedimentary components.226Ra dating was applied to a sediment taken from the slope of the San Clemente Basin in the Southern California coastal region. Rates of sedimentation over two half-lives of the nuclide were found to be either 5.2 or 5.3 cm/1000 years depending upon which of two models for the geochronology is used. One model assumes that the230Th brings to the deposit an amount of226Ra in equilibrium with it. The other is based upon the growth of the226Ra from the230Th in the sedimentary components.238+239Pu and210Pb levels in the upper strata indicated sedimentation rates of the order of 100–500 cm/1000 years, i.e. much faster accumulations. We suggest these derived rates are spurious and reflect bioturbative activities of surface-living organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号