首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tim  Byrne Lee  DiTullio 《Island Arc》1992,1(1):148-165
Abstract We propose that a change in convergence between the Pacific and Eurasian plates and the demise of the Kula-Pacific spreading centre at ca 43 Ma resulted in an ∼40° counterclockwise rotation in shortening direction within the Eocene Shimanto accretionary prism of southwest Japan. Evidence for this interpretation comes from: (1) structural studies of the accreted, deep-sea rocks of the Eocene Shimanto Belt from four widely separated localities; and (2) new plate reconstructions that incorporate the geological history of east Asia as well as the recently recognized reorganization of the Kula and Pacific plates at the time of anomaly 24. These reconstructions suggest that the Philippine Sea plate formed as the Kula-Pacific spreading centre reoriented at the time of anomaly 24 and that the Kula plate was being subducted beneath southwest Japan until ca 43 Ma. Our reconstructions and structural studies suggest that after ca 43 Ma, plate convergence in southwest Japan was oblique to the trend of the continental margin. Oblique convergence was apparently recorded at this time because arc volcanism had decreased and the accretionary prism was not detached from the arc massif. Moreover, the transition from cataclasis and faulting to pressure solution within the accreted sediments may have resulted in a stronger basal décollément, resulting in higher shear stresses along this boundary. We therefore propose that where the arc region and the décollément are of similar strengths, structures within accretionary prisms may record changing plate motions, including oblique convergence.  相似文献   

2.
A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea.  相似文献   

3.
The distribution of heat flow in the North Pacific Ocean has been examined, and a map of geothermal and geomagnetic fields for the Bering Sea as it is known today has been made. Reliable data are lacking regarding the time of origin for features of oceanic and continental genesis in the Bering Sea, which is an obstacle to the study of geodynamic processes in the North Pacific. Heat flow data were used to yield numerical estimates for the age of seafloor features in the Bering Sea: the Kamchatka Basin (21 Ma), Shirshov Ridge (95 Ma for the northern part and 33 Ma for the southern), the Aleutian Basin (70 Ma), Vitus Rise (44 Ma), Bowers Ridge (30 Ma), and Bowers Basin (40 Ma). These age estimates are corroborated by combined geological, geophysical, and plate kinematic data. A thermochemical model of global mantle convection has been developed in order to perform a numerical simulation of the thermal process involved in the generation of extended regional features in the North Pacific (the Emperor Fracture Zone, Chinook Trough, etc.). The modeling suggests a plume-tectonic origin for these features, yielding the optimal model for the tectonic evolution of the North Pacific. An integrated geological and geothermal analysis leads to the conclusion that the northern and southern parts of the Shirshov Ridge are different, not only in geologic age, but also in tectonic structure. The northern part is of imbricated-thrust terrane origin, while the southern part is of ensimatic island-arc origin, similar to that of Bowers Ridge. The seafloor of the Aleutian Basin is an outlier of the Upper Cretaceous Kula plate where, in the Vitus Rise area, backarc spreading processes originated during Eocene time. The terminating phase of activity in the Bering Sea began about 21 Ma by spreading in the older seafloor of the Kamchatka Basin. We developed plate-tectonic reconstructions of evolution for the North Pacific for the times 21, 33, 40, and 70 Ma in the hotspot system based on age estimates for the seafloor features derived from heat flow data and modeling of the thermal generation of regional faults, as well as on an analysis of geomagnetic, tectonic, and geological data.  相似文献   

4.
Tetsuya  Tokiwa 《Island Arc》2009,18(2):306-319
Paleomagnetic studies and hotspot track analyses show that the Kula Plate was subducted dextrally with respect to the Eurasian Plate from the Coniacian to Campanian. However, geological evidence for dextral subduction of the Kula Plate has not been reported from Southwest Japan. Studies of the Coniacian to lower Campanian Miyama Formation of the Shimanto Belt reveal that the mélange fabrics show a dextral sense of shear both at outcrop and microscopic scales. In addition, thrust systems at map-scale also show dextral shearing. Restored shear directions in the mélange indicate dextral oblique subduction of an oceanic plate. This indicates that the Kula Plate subducted dextrally along the eastern margin of Asia during the Coniacian to early Campanian. Combinations with other published kinematic and age constraints suggest that Southwest Japan experienced a change from sinistral to dextral and back to sinistral shear between 89–76 Ma. This history is compatible with global-scale plate reconstructions and places good constraints on the timing of plate boundary interaction with the Cretaceous East Asian margin.  相似文献   

5.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

6.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

7.
Complex patterns of spreading centers were formed in Mesozoic time during the breakup of Gondwanaland and the Pacific tectonic plate. The approximate locus of each breakup can be identified by paleomagnetism, paleogeography, and plate tectonics. Each coincides with the present location of similarly complex patterns of intense positive gravity anomalies produced by rising and divergent mantle convection. Apparently the convection caused the breakups and the location and intensity of the convective pattern have not changed since Mesozoic time.  相似文献   

8.
A migration model of magmatism based on the granite ages in Southwest Japan is proposed to explain the ridge subduction beneath the Eurasia continent as the cause of the along-arc and across-arc youngings of the granite ages and the very high activity of the magmatism in the Cretaceous. For the construction of the magmatic model, the localities of the granite age samples are denoted by the cartesian coordinates X and Y, which are measured along and normal to the Median Tectonic Line (MTL), respectively, and their ages are set corresponding to the coordinate Z vertical to the X–Y plane. The age trend is then formulated by a regression plane of Z on X and Y, which inclines in both directions along and normal to the MTL, and approximates the ages with the very high multiple correlation coefficient 0.91. Evaluating the magmatic trend by such a method, various characteristics of the activities can be taken easily; for example, the isochronous line of the magmatism, which is an intersection of the regression plane and an arbitrary horizontal plane, is found to extend landward obliquely across the continental margin. The migrating rate of the isochronous line along the MTL is also taken to be 2.8 cm/year as a reciprocal of the inclination of the along-arc younging. The isochronous line is speculated to be the out-cropped manifestation of the subcrustal linear heat source. Such a migrating linear heat source is probably due to the subduction of an active ridge, the Kula (or Izanagi)–Pacific ridge in the Cretaceous. The migration model of magmatism harmonizes very well with the plates and the ridge motions in the East Asia area during the late Mesozoic. The ridge subduction is one of the important phenomena that explain the unusually active arc magmatism and the migrating slab window; it is important to grasp dynamically the geological messages issued from the system.  相似文献   

9.
The South Central Pacific is the location of an abnormal concentration of intraplate volcanism. Noting that this volcanism is present from the Kermadec Tonga trench to the Easter microplate and forms a wide east–west channel, we propose to explain its occurrence in relation to the Pacific plate geometry and kinematics. We construct 2D numerical models of stress and strain within the Pacific plate using its velocity field and boundary conditions. The models indicate a shear band, associated to a change from compressional stresses to the south to tensional stresses to the north, which develop after 10 Myr between the Australian plate corner and the Easter microplate. We propose that the Central Pacific intraplate volcanism is related to this process, and may represent the first step of a future plate re-organization which will eventually break the Pacific plate in a southern and a northern plate due to intraplate stresses. Present-day intraplate volcanism would define break up spots of the future border.  相似文献   

10.
Bathymetric and magnetic data are used to obtain estimates, on the Pacific and Nazca plates, of the boundaries separating lithosphere generated at the old Farallon Ridge from the more recent one created at the present-day East Pacific Rise. An excellent correlation is found with the sites of known teleseismically recorded intraplate seismicity, suggesting that these boundaries, which are lines of age discontinuity in the plate, must be zones of weakness of the lithospheric plate. In particular, the so-called Region C, identified by Okal et al. as a major site of seismic release, sits on a small piece of Farallon plate, in the immediate vicinity of the northern extension of the fossil Roggeveen Rise, cut across by the East Pacific Rise during the ridge jump.  相似文献   

11.
The geology of Alaska has long been recognized as very complex. Recent paleomagnetic data, combined with paleogeographic reconstructions based on the concepts of plate tectonics, indicate that at least the southern parts of Alaska may be made up of a number of slivers of continental material rafted up along the western edge of North America.If a model of this sort is real, the implications are far reaching. Thus, the first part of this survey explains in some detail the techniques and assumptions used, namely the paleomagnetic technique, the use of the geomagnetic field reversal pattern as seen in marine magnetic anomalies, the use of both local (Alaskan) and global seismicity patterns, and the concept of sea-mount chains generated by hot spots as indicators of past movement of the ocean floor.By combining information derived from these different methods, an internally consistent picture of the development of the Alaska Peninsula and Gulf of Alaska has been assembled. This model involves the region that is now the Alaska Peninsula area, having been located at approximately the latitude of Oregon/california in early Mesozoic times, and looking much like Baja California looks today. Baja Alaska was then rafted north on the ancient Pacific plate, and rotated into its present position as a result of changes in the relative Pacific-North American plate motion.  相似文献   

12.
华北东部晚中生代伸展构造作用   总被引:8,自引:3,他引:5       下载免费PDF全文
本文在对华北东部晚中生代变质核杂岩、原型裂陷盆地群分布特征研究的基础上,结合区域地壳和上地幔的地球物理场特征,分析了变质核杂岩构造、裂陷盆地群的主要控制因素和岩石圈巨大减薄作用的形成机理,阐明了华北东部晚中生代的构造演化受太平洋板块俯冲效应、扬子板块碰撞挤压和软流圈大规模上涌联合作用的控制,而地表、中-上地壳分界和Moho界面是深部地质过程和浅部地质构造之间耦合的关键界面.  相似文献   

13.
When combined with the Miocene-Recent volcanic record of Baja California, a parallel drawn between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12-10 Myr. The slab-free zone manifestations challenge the notion that ridge subduction has not occurred beneath the southern Baja California peninsula. The geochemically distinctive rocks from the Santa Clara volcanic field of west-central Baja California, including coeval adakites and niobium-enriched basalt, are commonly inferred to signal partial melting of the subducting plate at shallow depths and relatively high temperatures, before slab dehydration occurs. Such PT conditions for slab melting have only been observed in association with spreading-ridge subduction. We propose that slab window development beneath southern Baja California and mainland Mexico (30° to 18°N) resulted from subduction of the East Pacific rise.  相似文献   

14.
利用国家测震台网固定台站和"中国地震科学台阵探测"项目在南北地震带北段布设的宽频带流动台阵记录到的极远震事件,通过SS前驱波震相研究,获得了阿留申—阿拉斯加俯冲带东段及邻区下方410 km和660 km间断面的埋深和起伏形态特征.为增强对SS前驱波震相的识别,我们采用了时差校正和共反射点叠加分析.叠加结果显示,毗邻阿留...  相似文献   

15.
Active oceanic ridges are part of the global system of diverging plate boundaries encircling the Earth. They represent weak zones of the lithosphere. They are isostatically equilibrated. The system as a whole is considered to be well adapted to the present field of plate driving forces. The search for regularities in the pattern of active oceanic ridges may, therefore, provide valuable information as to the large-scale characteristics of structures and processes in the Earth’s mantle. Two large belts of active oceanic ridges are envisaged: (1) The semi-circular belt bordering the Pacific plate which extends from South of Tasmania to Northwest of Vancouver Island over a length of 20,000 km. It appears to encircle a center P1 in the central Pacific region. (2) The circum-African belt bordering the African plate which extends from the Azores to the Gulf of Aden over a length of 24,000 km. It appears to encircle a center A1 in central Africa. The attempt is made to determine the position of these centers. Extent and position of the ridge systems are described by 34 fixed points. Points R01–R20 mark the circum-African ridge system, points R21-R34 the Pacific ridge system. A least-squares adjustment is used to determine the optimum position of the centers P1 and A1. Center P1 of the Pacific ridge system is located at 169.8°W/2.6°S. Center A1 of the circum-African ridge system is located at 11.6°E/2.4°N. The location error of the centers is less than 2.8°. In view of the great extent of the ridge systems, and considering the fact that the location of P1 and A1 is based on independent data sets, the nearly antipodal and equatorial position of the centers is remarkable. The newly defined centers P1 and A1 are located close to the Pacific pole P, at 170°W/0°N, and the African pole A, at 10°E/0°N. Within the limits of error the center P1 coincides with pole P, the center A1 with pole A. Originally, these poles were introduced in order to describe a fundamental hemispherical symmetry which is apparent in the evolution of the Earth’s lithosphere during the last 180 Ma. The new results confirm the unique position of poles P and A in the global tectonic framework.  相似文献   

16.
Up to now, tests of thermal models of the oceanic lithosphere as it cools and moves away from the ridge crest have been based mainly on topography and heat flow data. However, large areas of the ocean floor deviate from the normal subsidence due to thermal contraction and heat flow data are not very sensitive to the form of the model.

Cooling of the lithosphere causes a short-wavelength step in the geoid across fracture zones that can also be used to constrain thermal models. We have analyzed geoid data at fracture zones from the SEASAT altimeter measurements in the entire Pacific Ocean and redetermined parameters of the cooling models. We find that the data reveal two distinct regimes of cooling; one for seafloor ages in the range 0–30 Ma, the other beyond 30 Ma; this does not appear to be correlated with particular fracture zones but rather it is representative of the whole area studied, i.e., the entire south Pacific and northeast Pacific Ocean. These two trends may be interpreted in terms of two different (asymptotic) thermal thicknesses of the plate model. The smaller thermal thickness ( 65 km) found for ages <30 Ma—compared to 90 km in the age range 30–50 Ma—calls for some kind of thermal perturbation in the vicinity of the ridge crest.

From the results obtained in this study, we conclude that the half-space cooling model is unable to explain the data, that beyond 30 Ma, a simple plate model gives a satisfactory fit to the data but in the younger plate portion (ages < 30 Ma) the cooling history of the oceanic lithosphere is much more complex than predicted by the usual cooling models. Furthermore, the depth-age relationship obtained from the geoid-derived thermal parameters departs significantly beyond 30 Ma from the widely used Parsons and Sclater's depth-age curve, predicting a lesser subsidence.  相似文献   


17.
In this paper the mid-ocean ridge axial valley is modelled as a steady-state lithospheric neck in which lithospheric stretching balances lithospheric accretion. Conversely, the axial high is a steady-state lithospheric bulge. The lithosphere is modelled as a thin plate with a Newtonian rheology. It is shown that an axial valley will occur if the rate of viscosity increase away from the ridge axis is faster than the rate at which accretion decreases. An axial high will occur if the opposite condition holds. This is consistent with the observation that axial valleys occur at low spreading rates and axial highs at high spreading rates. By fitting our model to profiles across the Mid-Atlantic Ridge and the East Pacific Rise and assuming the lithospheric thickness at the ridge axis to be 5 km, we find accretion widths of 6–8 km. We find the width over which there is a significant increase in lithospheric viscosity to be also 6–8 km.  相似文献   

18.
We propose to characterize land–ocean distributions over Late Proterozoic to Phanerozoic times from measurement of perimeters and areas of continental fragments, based on paleomagnetic reconstructions. These measurements serve to calculate geophysically constrained breakup and scatter indexes of continental land masses from 0 to 1100 Ma. We then provide quantitative investigation and modelling of relationships between scatter of continental landmasses and mean age of the oceanic lithosphere during Mesozoic times, which appears to range from 56 to 62 Ma over the last 170 My. We then inverse the scatter of continental landmasses in terms of global oceanic crust mean age over the last 600 My, i.e. back in times where no measurement of seafloor accretion history is possible because of subduction. We finally show that the inferred evolution of oceanic lithosphere mean age over the Phanerozoic remarkably correlates in time with long-term sea-level changes since the Cambrian.  相似文献   

19.
Seven deep-sea sediment cores recovered in the central equatorial Pacific collectively span a magneto- and biostratigraphically determined age interval ranging from about 0.1 to 21 m.y. B.P. Measured values of paleomagnetic inclination and their systematic variation with depth in these cores denote relative motion between the central Pacific lithosphere and the magnetic field of the earth. Assuming that the position of the earth's dipole field remained essentially parallel to the present spin axis during the interval, the data provide evidence of a marked decrease in the northward rate of plate motion from about 11 cm/yr to about 6 cm/yr at approximately 12 m.y. B.P. This date of change of motion as well as the northward direction and overall average rate of about 8 cm/yr throughout the last 21 m.y., agree reasonably well with results of other studies of the tectonic history of the Pacific plate and ridge system. More significantly, however, these preliminary results demonstrate the usefulness of the paleomagnetic record in deep-sea sediment cores spanning sufficiently long intervals of time as an aid in reconstructing plate motions.  相似文献   

20.
选取太平洋板块南部边界的板块相对运动速度不同的两个洋脊-洋脊-转换断层(RRF)型三联点,即麦夸里(Macquarie)三联点和南太平洋三联点,为研究对象,通过数值模拟的方法,研究该类型三联点走滑断层边界两侧的板块相对运动速度对三联点附近地区地幔流动场和温度结构的影响。模拟结果表明:太平洋南部边界RRF三联点走滑断层边界两侧的板块相对运动速度控制着三联点附近的温度分布和地幔流动;随着走滑断层边界两侧板块相对运动速度的增加,转换断层相对滑动速度增加,温度上升,距洋脊边界100 km范围内的地幔流体速度变大;麦夸里三联点和南太平洋三联点处3个板块的相对运动,使得三联点的转换断层边界浅部产生剪应力集中,导致震源深度集中在15—25 km;同时相对运动产生的地幔流动引起温度结构变化,该变化控制着地形变化。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号