首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new analysis of palaeomagnetic data for igneous rocks from Deception Island, 25 de Mayo Island (King George Island) and Cape Spring, are given.K-Ar age determinations indicate that most of the igneous samples from 25 de Mayo Island included in the palaeomagnetic study are of Late Mesozoic/Early Tertiary age. The significance of these palaeomagnetic-radiometric data on the hypothesis of oroclinal bending of the Antarctic Peninsula and on the apparent polar movement of Antarctica is discussed.The positions of palaeomagnetic poles for the Andean igneous complex indicate that there has not been any apparent post-Late Cretaceous/Early Tertiary oroclinal bending in the Antarctic Peninsula from 74°S to 62°S.A comparison of the positions of palaeomagnetic poles for Antarctica and Australia suggests that the direction of apparent polar movement relative to Antarctica reversed after the Miocene.  相似文献   

2.
华北蓟县中、上元古界古地磁研究   总被引:12,自引:0,他引:12  
本文论述了华北蓟县中、上元古界地层标准剖面古地磁采样及实验室技术,采样地层的磁性特征,多磁成分的分析和测试结果.主要讨论了蓟县中、上元古界地层所代表的古地磁极性、极移路径和古纬度,并与北美大陆及华南(扬子)地块该时期的极移路径进行对比.  相似文献   

3.
The palaeomagnetic and rock magnetic characteristics of some Cenozoic rocks from the Cairo–Fayum area have been investigated. A total number of 259 oriented core samples were collected at 32 sites located in rocks of Eocene (13 sites), Oligocene (11 sites) and Pliocene (9 sites) ages. Most of these rocks carry a weak but stable remanent magnetisation that is principally carried by hematite. Goethite and magnetite are also found in some samples as subordinate constituents. Careful thermal demagnetisation successfully enabled the isolation of the characteristic remanent magnetisation. Normal and reversed polarities that passed a reversal test have been recorded in the three age groups. This magnetisation is probably of primary origin and reflects the ages of the rocks. The resultant palaeomagnetic poles are considered reliable and represent a good contribution to the African palaeomagnetic database and should help in further refining of the Cenozoic APWP for Africa.  相似文献   

4.
Virtual Pole from Magnetic Anomaly (VPMA) is a new multi-disciplinary methodology that estimates the age of a source rock from its magnetic anomaly, taken directly from available aeromagnetic data. The idea is to use those anomalies in which a strong remanent magnetic component is likely to occur. Once the total magnetization of the anomaly is computed through any of the currently available methods, the line that connects all virtual paleogeographic poles is related with the position, on a paleogeographic projection, of the appropriate age fragment of the APWP curve. We applied this procedure to five (5) well-known magnetic anomalies of the South American plate in SE Brazil, all of them associated to alkaline complexes of Mesozoic age. The apparent ages obtained from VPMA on three of the anomalies where the radiometric age of the source rock is known – Tapira, Araxá and Juquiá – were inside the error interval of the published ages. The VPMA apparent ages of the other two, where the age of the source rock is not known (Registro and Pariqueraçu magnetic anomalies) were geologically coherent. We expect that the application of the VPMA methodology as a reconnaissance geochronological tool may contribute to geological knowledge over continental areas, especially when the source rocks of the magnetic anomalies are unknown or buried below superficial sediments.  相似文献   

5.
Recently observed features in the subsurface geology of the Haifa Bay area (northern Israel) have been evaluated using 3-D forward gravity and magnetic modeling and inversion schemes. The interpretation is based on updated petrophysical data of the Jurassic, Cretaceous and Tertiary sedimentary layers and volcanics. It has been shown that the Bouguer gravity anomalies correspond mainly to thickness variations in the Senonian to Tertiary sediments. The gravity effect of these sediments was calculated using their actual densities and structural setting as interpreted from seismic reflection data. This effect was removed from the Bouguer gravity in order to study the pre-Senonian geological structures. The pattern of residual gravity anomalies (named “stripped gravity”) is essentially different from the pattern of the Bouguer gravity. The prominent Carmel gravity high, clearly seen on the Bouguer gravity map, completely vanishes on the “stripped” gravity map. That suggests that this relatively positive anomaly is caused by the considerable thickness of the low-density young sediments in the surrounding areas and does not correspond to high-density magmatic rocks or crystalline basement uplift as previously suggested. The average densities of the Jurassic and Cretaceous volcanics are generally lower then those of the background sedimentary rocks. Volcanics are the main cause for magnetic anomalies onshore and offshore northern Israel. The magmatic root of the Asher volcanics is, most probably, located close to the Yagur fault. A large, deep-seated gabbroic intrusion is assumed to be located under the Mediterranean abyssal plain in the NW part of the study area. The Atlit marine gravity low appears to be caused by a thick Mesozoic and Tertiary sedimentary accumulation. The results presented should be of considerable assistance in delineating some aspects of hydrocarbon exploration in the area.  相似文献   

6.
Successions of Lower to lower Middle Cambrian, Upper Permian to Upper Triassic and Lower Tertiary carbonates and arenites have been sampled in five sections, representative of the three main segments of the Mianwali reentrant in the (Trans-Indus) Salt Range (northern Pakistan), i.e.: the southern Khisor Range, the northern Surghar Range and the western Salt Range. Comparison of primary and secondary magnetization directions with the Indian APWP demonstrates the secondary origin of the Mianwali reentrant and shows a pattern of rotations which varies in sense and magnitude along the reentrant with the main structural trends. Data from the Trans-Indus and western Salt Range and published Early Cambrian, Early Permian and Late Tertiary palaeomagnetic results from the southern Salt Range and the Potwar Plateau show that the Hazara Arc underwent a 20–45° counterclockwise rotation relative to the Indian Shield. A contrasting clockwise rotation over about 45° has recently been established for thrust sheets in the opposing eastern limb of the Western Himalayan Syntaxis, i.e. for the Panjal Nappe [1] and the Riasi thrust sheet [2]. These palaeomagnetically established rotations conform with the about 75° azimuthal change in structural trend along the Syntaxis, and support Crawford's [3] suggestion that the Salt Range was originally in line with the northwestern Himalaya. The Salt Range front prograded and moved southwards as part of the Hazara Arc thrust sheet, detached from basement along the evaporitic Salt Range Formation. The Mianwali reentrant originated through obstruction of the southwards advancing thrust sheet by moulding around basement topography of the northwest oriented Sarghoda Ridge.  相似文献   

7.
Early attempts to utilize magnetic data to understand the volcanic and subvolcanic succession on the Faroese Continental Shelf have shown that conventional interpretation and modelling of magnetic data from this area leads to ambiguous results. Interpretation of the aeromagnetic data on the Faroese Continental Shelf shows that some previously identified basement highs coincide with reduced-to-pole magnetic highs, whereas others coincide with negative or mixed magnetic features. Similarly, igneous centres are characterized by different polarity magnetic anomalies. Palaeomagnetic analysis of the onshore volcanic succession has demonstrated that the thermoremanent magnetization of the basaltic lavas is stronger than the induced magnetism, and both reversely and normally magnetized units are present. We have tested this with 2½D profile modelling using the palaeomagnetic information to correlate high-amplitude magnetic anomalies with basalt successions containing changes in magnetic polarity. This approach has enabled us to map the termination of the differently magnetized units offshore and thereby extend the mapping of the Faroe Island Basalt Group on the Faroese Platform and into adjacent areas.  相似文献   

8.
Thermal and alternating-current demagnetization combined with ore microscopy and measurements of the temperature dependence of saturation magnetization have been carried out on some Mesozoic, probably Cretaceous, basaltic lavas from two areas (Seidfjell and Sørlifjell) at Spitsbergen. The experimental studies suggest that the Seidfjell locality has undergone extensive oxidations, which resulted in remagnetization. The estimated palaeomagnetic pole for this area is 77°N 107°E, which suggests a remagnetization, probably some time in the Late Tertiary. On the other hand the experimental data from the Sørlifjell locality suggest that the magnetization is primarily of deuteric origin. The mean palaeomagnetic pole position for this latter formation is at 75°N 235°E, which is significantly different from previously published European Mesozoic data. However, closing the Neo-Arctic basin by rotating Spitsbergen towards the Lomonosov Ridge, makes the suggested Cretaceous pole coincide with poles of similar age from North-America. This suggests that the estimated pole from Sørlifjell is a good approximation for a Late Mesozoic palaeomagnetic pole for Europe and it also confirms that the process of continental separation in the Arctic has taken place in Tertiary time.  相似文献   

9.
The magnetic susceptibility of 1300 samples of igneous rock drill cuttings obtained from eight deep drill holes in Iceland has been measured, in order to directly provide limits on the thickness of the layer which is the source of the magnetic anomalies over Iceland. The remanent magnetism of some of the material has also been studied, and the variation of magnetic susceptibility in 740 lava flows from eastern Iceland has been analysed as a function of depth of burial.All the results indicate no systematic change of susceptibility with depth up to 2.0 km. The Curie point of all deeply buried basalts in Iceland appears to be close to that of magnetite, so that the magnetic layer may be 5 km or more in thickness when susceptibility contrasts are considered; lateral contrasts in primary remanence may reach to 3 km depth. Derivation of a magnetic layer thickness in Iceland from analyses of magnetic anomalies, using methods which have been conventionally applied to marine magnetic anomalies could, on the other hand, yield much lower apparent thickness values (less than 1 km).We therefore argue that estimates of the magnetic layer thickness in oceanic regions should be based on considerations of magnetite Curie point isotherm behaviour, rather than on anomaly analysis.  相似文献   

10.
Summary The dolerite dyke of post-lower Gondwana age reported earlier by the authors [5]2) has been taken for detailed magnetic study. Seven magnetic traverses have been taken across the dyke using Schmidt vertical force variometer. Negative anomalies varying from 1400 to 2200 gammas have been observed. Magnetic susceptibility of samples from the dyke has been determined on both cores and crushed material, using the Model MS-3 susceptibility bridge. The average susceptibility of 20 samples has been found to be 1930x10–6 C.G.S. units. Direction and intensity of remanence on 10 oriented samples have been determined by an Astatic magnetometer. The average intensity of remanence has been found to be 3.13x10–3 C.G.S. units and the average direction has a declination of 323° and inclination-68° (up dip). The Koenigsberger ratio varies from 1.6 to 5.6. The high negative magnetic anomalies have been explained in terms of remance-that more than 80% of the anomaly is due to remance and that negative anomalies are due to negative inclination of remanent direction of the rocks. The magnetic direction for the dyke gave the position for Dhanbad as 51° south latitude in Jurassic period. This is in conformity with the deductions made by other workers from the palaeomagnetic studies of the Deccan and Rajmahal traps. The virtual geomagnetic pole in Jurassic period as deduced from the palaeomagnetism of the dyke has a position of latitude 8 1/2°N and longitude 71°W, in the southern Carribean. On palaeomagnetic evidence this dyke has been correlated with Rajmahal traps of eastern Bihar.  相似文献   

11.
An analysis of the magnetic structure of Plato and Atlantis seamounts in the North Atlantic was made using the phase-shifting technique of Schouten [9]. The possibility of distinguishing the age of the seamounts from the age of their adjacent seafloor using magnetic data was investigated. The method described proved simple and effective, but showed that age determinations cannot reliably be made from magnetics for the seamounts in question, since the variation of the position of the palaeomagnetic poles during the Cainozoic is not large enough to produce appreciable phase-shift differences in this part of the Atlantic.The polarization is normal. Since smaller seamounts also show a predominance of normal magnetization, this may mean that viscous remanent magnetization (VRM) dating from the present normal period, the Brunhes, is involved. VRM may lead to strong magnetizations in coarse-grained rock as shown by DSDP results. This may result into a general overprinting of thermoremanence (TRM) by VRM, thus glossing over reversed thermoremanent polarizations. Large seamounts thus may appear as normally polarized bodies. The statistics of reversely versus normally polarized seamounts may be explained by the same effect. This implies that palaeomagnetic pole and age determinations based on apparent magnetization directions modelled from the magnetic anomaly pattern over seamounts may be inaccurate.  相似文献   

12.
Magnetic anomalies over the continental shelf off the east coast of India (Orissa) suggest the presence of a highly magnetic rock type magnetized with an intensity of 900 nT in a direction, azimuth(A) = 150° and inclination(I) = +65°. This suggest the occurrence of igneous volcanic rocks which is confirmed from samples found below Tertiary sediments from a few boreholes in this region. The depth of this rock type as estimated from magnetic anomalies varies from approximately 1–2 km near the coast to 4–4.5 km towards the shelf margin. This direction of magnetization is the reverse of the reported direction of magnetization for the Rajmahal Traps of the Cretaceous period (100–110 m.y). A small strip of the body near the continental shelf margin appears, however, to possess normal magnetization suggesting the occurrence of normal and reversed polarities side by side, a characteristic typical for oceanic magnetic anomalies. The reversed polarity of the rocks on the continental shelf suggests that they correspond probably to the MO reversal (115 m.y.) on world magnetostratigraphic scale and provide a paleolatitude of 47°S for the land mass of India which agrees with the palaeoreconstruction of India and Antarctica. In this reconstruction, the Mahanadi Gondwana graben on the Indian subcontinent falls into line with the Lambert Rift in Antarctica, suggesting a probable common ancestry. The volcanic rocks on the continental shelf off the east coast of India might represent a missing link, that is, rocks formed between India and Antarctica at the time of the break-up of Gondwanaland. Satellite magnetic anomalies (MAGSAT) recorded over the Indian shield and interpreted in terms of variations in the Curie point geotherm provide a direction of magnetization which also places this continent close to Antarctica. As such MAGSAT anomalies recorded over eastern Antarctica are found compatible with those recorded over the Indian shield.  相似文献   

13.
Superimposed on a regional pattern of oroclinal bending in the Aegean and west Anatolian regions, the coastal region of western Anatolia, shows a complex and chaotic pattern of coexisting clockwise and counterclockwise rotations. Here, we report new palaeomagnetic data from the eastern Aegean island of Chios, to test whether this fits the regional palaeomagnetic pattern associated with the Aegean orocline, or should be included in the narrow zone of chaotic palaeomagnetic directions. Therefore, a combined palaeomagnetic study of Miocene sediments and volcanic rocks has been carried out. Thermal and AF demagnetization of a 130-m thick Middle Miocene succession from the Michalos claypit allowed a stable component of both polarities to be isolated while rock magnetic experiments showed that the main magnetic carrier is magnetite. When compared with the Eurasian reference, the mean declination of 348 ± 5.1° implies 15° of counterclockwise rotation since Middle Miocene times. The obtained shallow inclination of 38 ± 6.7° was corrected to 61.8 ± 3.9°, by applying the elongation/inclination correction method for inclination shallowing. This result is similar to the expected inclination of 58° for the latitude of Chios. The palaeomagnetic analysis (demagnetization treatment and corresponding rock magnetic measurements) of the volcanic rocks identify a stable, predominantly normal, ChRM with poorly constrained mean declination of about 290 ± 19.8° based on five successfully resolved components. The significantly different palaeomagnetic results obtained from an island as small as Chios (and a very short distance), and the relatively large rotation amounts do not fit the regional palaeomagnetic direction of Lesbos and basins in northwestern Turkey which show little or no significant rotation. We thus prefer to include Chios in the coastal zone of chaotic rotations, which may represent a previously inferred tectonic transfer zone that accommodates lateral differences in extensional strain within the Aegean back-arc.  相似文献   

14.
Summary The possibility of utilising the results of remaeent magnetism of sub-surface bodies, as obtained from the magnetic surveys, for the study of continental drift is presented. As an example, the quartz-magnetite bands occurring at Ongole, Andhra Pradesh, India have been magnetically surveyed. A modified method for the interpretation of magnetic anomalies of infinite dykes has been presented and is used for the interpretation of field profiles. A remanent magnetic vector with an up dip of 26° lying exactly in the present magnetic meridian has been obtained, which yields the ancient latitude of India (Reference Town being Nagpur) to be 9°S of equator at an age of 1400 million years.  相似文献   

15.
Analytical models of the palaeomagnetic field have been constructed for a number of geological periods (Quaternary Neogene, Jurassic, Triassic, Permian and Permo-Carboniferous) by spherical harmonic analysis using the present-day world map as a basis and (for the earlier periods) using also a palaeogeographic reconstruction. The use of the palaeogeographic chart for the earlier periods simplifies the models, and its use appears to be valid. The low accuracy, small number and uneven distribution of palaeomagnetic data severely limit the conclusions which can be drawn from the analyses. Nevertheless the results for all periods indicate that throughout the past 300 million years the geomagnetic field has maintained its global structure, and has remained similar to the field of a dipole slightly shifted from the Earth's centre. It appears that there have not been any persistent systematic anomalies or variations in the Earth's magnetic field throughout that time, but rather that the field has been oscillating around a mean level not greatly different from that of the present epoch.  相似文献   

16.
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.  相似文献   

17.
Summary The paper contains an outline of the palaeomagnetic investigations in Hungary including some of their geophysical and geological applications. More than 500 samples of volcanic rocks were studied by usual palaeomagnetic techniques. The rocks investigated belong to three different geological periods — the Quaternary — upper Tertiary, the middle Miocene and the lower Cretaceous. The palaeomagnetic data obtained for the individual localities are summarized in the Appendix.Paper presented at the IAGA Symposium Madrid, September 1969.  相似文献   

18.
A revised model of seafloor spreading between India and Australia from the inception of spreading 125 m.y. to the change to a new system at 90 m.y. stems from the wider recognition of the M-series of magnetic anomalies off the southwestern margin of Australia, from a revised pole of opening between Australia and Antarctica, and by the extension in the central Wharton Basin of the Late Cretaceous set of magnetic anomalies back to 34. The phase of spreading represented by the later anomalies has been extended back to 90 m.y. in order to give a resolved pole that describes the rotation of India from Australia consistent with the M-series anomalies, DSDP site ages, and fracture zone trends. An abandoned spreading ridge in the Cuvier Abyssal Plain indicates a ridge jump within the first ten million years of spreading. Elsewhere, two kinds of ridge jump (one to the continental margin of Australia or India, the other by propagation of the spreading ridge into adjacent compartments thereby causing them to fuse), are postulated to account for other observations.  相似文献   

19.
Azimuthally averaged power spectra are widely used in the Curie point depth (CPD) estimation with the implicit assumption that the magnetization distribution is random and uncorrelated. However, the marine magnetic anomalies are caused by bands of normal and reverse magnetization and show obvious trends. To investigate the effects of the anisotropy of marine magnetic anomalies on the CPD estimates, we develop 3D fractal striped magnetization models to produce lineated marine magnetic anomalies for the first time. We analyze the spectra anisotropy of the lineated magnetic anomalies of the synthetic fractal striped magnetization models and investigate its effects on the CPD estimates. The synthetic models and actual data show that the spectra of the lineated marine magnetic anomalies are directionally anisotropic. The amplitude response is strong and the slope of the logarithmic spectrum is large in a direction perpendicular to the stripes of magnetic anomalies, whereas the amplitude response is weak and the slope of the logarithmic spectrum is small in a direction parallel to the stripes of magnetic anomalies. The depth estimates in the perpendicular direction are close to the actual values, whereas the depths estimates in the parallel direction are significantly lower than the actual values. The actual marine magnetic anomalies of the South China Sea exhibit an anisotropic power spectrum that is consistent with the spectral anisotropy of magnetic anomalies of the synthetic fractal striped magnetization models.  相似文献   

20.
The study of a 275.5 m thick section of white, pelagic limestones occupying the valley of the Fonte del Giordano river on the southern slope of Mt. Montagnola has yielded a biostratigraphically controlled clear magnetic reversal pattern after thermal cleaning. The magnetic stratigraphy of the lower 131 m of the section (Calpionellid zones) is correlatable with the M-sequence of oceanic magnetic anomalies between M-19 and M-14. The reversal stratigraphy of the upper 81.5 m of the section (Radiolaria zone) has also been tied to the oceanic polarity time scale by making linear interpolation for a missing 63 m thickness underneath it.Besides the Fonte del Giordano section two Berriasian outcrops each with a different bedding attitude were studied at Gubbio and near Cagli for tectonic tilt test giving positive results. The mean palaeomagnetic pole position for the Late Jurassic/Early Cretaceous after bedding correction is: Φ = 19.1°, Λ = 288.2°, k = 148.7, α95 = 10.2° (N = 3), confirming the presence of a large swing in the polar path, a common behaviour of apparent polar wandering for the peri-Adriatic region during this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号