首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
气候变化将使水利工程的服役环境发生较大改变,水工混凝土作为水利工程建设最主要的建筑材料之一,其对极端气候变化较为敏感与脆弱。本文以水库大坝、大型调水工程等水利工程为对象,系统总结了部分已观测到的低温冻害、寒潮和干旱等气候条件对水利工程影响的事实。结合未来气候变化趋势及其可能的影响,从改善水工材料性能的工程措施角度,分析了在水利工程设计、施工、运行阶段可采取的应对措施,并从规划修订、预案制订、监测预报等非工程措施角度,分析了在防洪安全、水资源安全等领域可采取的减缓适应对策,以提高水工程应对气候变化的能力。  相似文献   

2.
As structures built now will be expected to last well past 2064 (50 years) it is vital that the effect of climate change be considered in their design and material selection. In particular changes in the rate of corrosion of metal components must be considered. To this end this study estimates the maximum likely change in the corrosion rate for the year 2070 so it can be included in current design. Changes in corrosion are estimated for 11 coastal and inland locations in Australia. For each station the climatic data (3-hourly) in 2070 is estimated by modifying current data with probable changes based on two climate change models (CSIRO: CSIRO-Mk 3.5 and MRI: MRI-CGCM 3.2.2). The former is for high global warming rate and the later the A1FI scenario. This climatic data is then run the Corrosion “predictor” (a multi-scale process model) to predict corrosion at each location. It is found that significant changes occur with corrosion in coastal locations increasing substantially, in contrast the corrosion at inland locations will decrease moderately. The increase in coastal locations is associated with a greater build up of salt due to less frequent rain evens while the reduction in inland locations is associated with a reduction in RH and thus surface wetness.  相似文献   

3.
Many decisions concerning long-lived investments already need to take into account climate change. But doing so is not easy for at least two reasons. First, due to the rate of climate change, new infrastructure will have to be able to cope with a large range of changing climate conditions, which will make design more difficult and construction more expensive. Second, uncertainty in future climate makes it impossible to directly use the output of a single climate model as an input for infrastructure design, and there are good reasons to think that the needed climate information will not be available soon. Instead of optimizing based on the climate conditions projected by models, therefore, future infrastructure should be made more robust to possible changes in climate conditions. This aim implies that users of climate information must also change their practices and decision-making frameworks, for instance by adapting the uncertainty-management methods they currently apply to exchange rates or R&D outcomes. Five methods are examined: (i) selecting “no-regret” strategies that yield benefits even in absence of climate change; (ii) favouring reversible and flexible options; (iii) buying “safety margins” in new investments; (iv) promoting soft adaptation strategies, including long-term prospective; and (v) reducing decision time horizons. Moreover, it is essential to consider both negative and positive side-effects and externalities of adaptation measures. Adaptation–mitigation interactions also call for integrated design and assessment of adaptation and mitigation policies, which are often developed by distinct communities.  相似文献   

4.
How individuals perceive climate change is linked to whether individuals support climate policies and whether they alter their own climate-related behaviors, yet climate perceptions may be influenced by many factors beyond local shifts in weather. Infrastructure designed to control or regulate natural resources may serve as an important lens through which people experience climate, and thus may influence perceptions. Likewise, perceptions may be influenced by personal beliefs about climate change and whether it is human-induced. Here we examine farmer perceptions of historical climate change, how perceptions are related to observed trends in regional climate, how perceptions are related to the presence of irrigation infrastructure, and how perceptions are related to beliefs and concerns about climate change. We focus on the regions of Marlborough and Hawke’s Bay in New Zealand, where irrigation is utilized on the majority of cropland. Data are obtained through analysis of historical climate records from local weather stations, interviews (n = 20), and a farmer survey (n = 490). Across both regions, no significant historical trends in annual precipitation and summer temperatures since 1980 are observed, but winter warming trends are significant at around 0.2–0.3 °C per decade. A large fraction of farmers perceived increases in annual rainfall despite instrumental records indicating no significant trends, a finding that may be related to greater perceived water availability associated with irrigation growth. A greater fraction of farmers perceived rainfall increases in Marlborough, where irrigation growth has been most substantial. We find those classes of farmers more likely to have irrigation were also significantly more likely to perceive an increase in annual rainfall. Furthermore, we demonstrate that perceptions of changing climate – regardless of their accuracy – are correlated with increased belief in climate change and an increased concern for future climate impacts. Those farmers that believe climate change is occurring and is human induced are more likely to perceive temperature increases than farmers who believe climate change is not occurring and is not human induced. These results suggest that perceptions are influenced by a variety of personal and environmental factors, including infrastructure, which may in turn alter decisions about climate adaptation.  相似文献   

5.
全球气候变化,特别是升温、降水强度增加以及极端天气气候事件频发,会通过影响重大工程的设施本身、重要辅助设备以及重大工程所依托的环境,从而进一步影响工程的安全性、稳定性、可靠性和耐久性,并对重大工程的运行效率和经济效益产生一定影响,气候变化还对重大工程的技术标准和工程措施产生影响。本文以青藏铁路(公路)工程、高速铁路工程、重大水利水电工程为典型工程阐述气候变化对重大工程的影响。青藏铁路(公路)沿线的冻土环境的热平衡极易打破,多年冻土环境一经破坏,难以恢复,气候变化已经使多年冻土环境发生变化,并且未来的多年冻土退化在全球变暖的背景下将变得更加严重。未来中国地区的地表气温、年平均降水量、台风等都将发生变化,极端天气气候事件频发,影响我国高速铁路的气候变化向着不利于高铁工程的趋势发展,将给高铁基础设施的服役寿命以及高铁运输秩序等方面带来影响。气候变化导致的温度变化、降水变化,改变了水资源的时空分布规律,对水工程和水安全在水量分配和调度、水资源利用和水文风险管理等产生影响。  相似文献   

6.
黔南暴雨洪涝灾害情势及防御   总被引:3,自引:0,他引:3  
石昌军 《贵州气象》2010,34(4):6-10
根据黔南州1983—2007年共25 a的暴雨洪涝灾害资料及降水资料,对黔南州洪涝灾害的基本特征和主要特点进行分析、总结,并结合该州气候变化趋势及人文地理、经济社会发展等情况进行研究,结果表明:5—8月是该州暴雨洪涝灾害的多发季节,尤以6月最多,7月次之;州的南部和中部地区洪涝灾害要重于北部地区,而且随着经济的发展,暴雨洪涝灾害所造成的损失越来越大,全州防御暴雨洪涝灾害面临的形势更加严峻。同时,根据防灾减灾面临的形势提出一些防御措施。  相似文献   

7.
Potential impacts of climate change on heavy rainfall events and flooding in the Australian region are explored using the results of a general circulation model (GCM) run in an equilibrium enhanced greenhouse experiment. In the doubled CO2 simulation, the model simulates an increase in the frequency of high-rainfall events and a decrease in the frequency of low-rainfall events. This result applies over most of Australia, is statistically more significant than simulated changes in total rainfall, and is supported by theoretical considerations. We show that this result implies decreased return periods for heavy rainfall events. The further implication is that flooding could increase, although we discuss here the many difficulties associated with assessing in quantitative terms the significance of the modelling results for the real world.The second part of the paper assesses the implications of climate change for drought occurrence in Australia. This is undertaken using an off-line soil water balance model driven by observed time series of rainfall and potential evaporation to determine the sensitivity of the soil water regime to changes in rainfall and temperature, and hence potential evaporation. Potential impacts are assessed at nine sites, representing a range of climate regimes and possible climate futures, by linking this sensitivity analysis with scenarios of regional climate change, derived from analysis of enhanced greenhouse experiment results from five GCMs. Results indicate that significant drying may be limited to the south of Australia. However, because the direction of change in terms of the soil water regime is uncertain at all sites and for all seasons, there is no basis for statements about how drought potential may change.  相似文献   

8.
Indigenous peoples offer alternative knowledge about climate variability and change based on their own locally developed knowledges and practices of resource use. In this article we discuss the role of traditional ecological knowledge in monitoring and adapting to changing environmental conditions. Our case study documents a project to record the seasonal knowledge of the Miriwoong people in northern Australia. The study demonstrates how indigenous groups’ accumulate detailed baseline information about their environment to guide their resource use and management, and develop worldviews and cultural values associated with this knowledge. We highlight how traditional ecological knowledge plays a critical role in mediating indigenous individuals and communities’ understandings of environmental changes in the East Kimberley region of north-west Australia, and how these beliefs may influence future decision-making about how to go about adapting to climate change at a local level.  相似文献   

9.
Attack of decay fungi on wood-based material depends primarily on the natural durability of wood, the local climatic conditions, and the likely climatic change. This study investigates the vulnerability of wood and structural timber in ground contact to decay fungi under high and medium emissions scenarios specified by the Intergovernmental Panel on Climate Change, and a future scenario in which the global emissions have been limited to 550?ppm through a range of successful intervention schemes. Nine general circulation models are applied to project the local climates of Brisbane, Sydney, and Melbourne in Australia. It was found that, under the three emissions scenarios, the median decay rate of wood by 2080, relative to that in 2010, could increase up to 10?% in Brisbane and Sydney, but could decrease by 12?% in Melbourne. For timber of less durable wood species 50?years after installation, the residual strength under climate change could be almost 25?% less than that without climate change. The coefficients of variation (COVs) of decay rate of wood are in the vicinity of 1.0 regardless of wood species. For residual strength of timber pole after 50?years of installation, the COVs range from 0.2 to 1.1, depending on the natural durability of timber and the site location. The high COVs due to the variability of natural durability of wood and of climate change, in combination with the likely changes in median residual strength of structural elements, will cause significant structural reliability issues of wood construction and need to be addressed in engineering design codes.  相似文献   

10.
由于气候变化,现有气候分区内水工混凝土经历的冻融温度正在发生改变,采用研制的气候模拟系统,对不同强度等级、不同抗冻设计等级的水工混凝土在-30~-5℃冻融中心温度下进行了系统的冻融试验。研究提出了变化条件下水工混凝土冻融温度-强度等级-抗冻设计等级-冻融循环次数归因分析图。基于试验结果,对我国现行水工混凝土抗冻制度进行了探讨,分析了改变水工混凝土抗冻融中心温度对温室气体减排的影响。  相似文献   

11.
Adapting to Climate Impacts on the Supply and Demand for Water   总被引:1,自引:0,他引:1  
The prospect of climate change adds to future water supply and demand uncertainties and reinforces the need for institutions that facilitate adaptation to changing conditions and promote efficient management of supplies and facilities. High costs and limited opportunities for increasing water supplies with dams, reservoirs, and other infrastructure have curbed the traditional supply-side approach to planning in recent decades. Although new infrastructure may be an appropriate response to climate-induced shifts in hydrologic regimes and water demands, it is difficult to plan for and justify expensive new projects when the magnitude, timing, and even the direction of the changes are unknown. On the other hand, evaluating margins of safety for long-lived structures such as dams and levees should consider the prospect that a greenhouse warming could produce greater hydrologic variability and storm extremes. Integrated river basin management can provide cost-effective increases in reliable supplies in the event of greenhouse warming. With water becoming scarcer and susceptible to variations and changes in the climate, demand management is critical for balancing future demands with supplies. Although regulatory and voluntary measures belong in a comprehensive demand management strategy, greater reliance on markets and prices to allocate supplies and introduce incentives to conserve will help reduce the costs of adapting to climate change. Federal water planning guidelines allow for consideration of plans incorporating changes in existing statutes, regulations, and other institutional arrangements that might be needed to facilitate water transfers and promote efficient management practices in response to changing supply and demand conditions.  相似文献   

12.
GLOBAL CLIMATE CHANGE ADAPTATION: EXAMPLES FROM RUSSIAN BOREAL FORESTS   总被引:2,自引:0,他引:2  
The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Large shifts in the distribution (up to 19% area reduction) and productivity of boreal forests are implied by scenarios of General Circulation Models (GCMs). Uncertainty regarding the potential distribution and productivity of future boreal forests complicates the development of adaptation strategies for forest establishment, management, harvesting and wood processing. Although a low potential exists for rapid natural adaptation of long-lived, complex boreal forests, recent analyses suggest Russian forest management and utilization strategies should be field tested to assess their potential to assist boreal forests in adaptation to a changing global environment. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented, including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaptation measures for them; (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation.  相似文献   

13.
To clarify the link between existing infrastructure legacy and the 2°C target, we extend the work of Davis et al. (Science 329:1330–1333, 2010) by introducing non-CO2 greenhouse gases and the inertia in transportation-needs drivers. We conclude that climate policies able to maintain climate change below 2°C cannot disregard existing infrastructure.  相似文献   

14.
Australia's vulnerability to climate variability and change has been highlighted by the recent drought (i.e. the Big Dry or Millennium Drought), and also recent flooding across much of eastern Australia during 2011 and 2012. There is also the possibility that the frequency, intensity and duration of droughts may increase due to anthropogenic climate change, stressing the need for robust drought adaptation strategies. This study investigates the socio-economic impacts of drought, past and present drought adaptation measures, and the future adaptation strategies required to deal with projected impacts of climate change. The qualitative analysis presented records the actual experiences of drought and other climatic extremes and helps advance knowledge of how best to respond and adapt to such conditions, and how this might vary between different locations, sectors and communities. It was found that more effort is needed to address the changing environment and climate, by shifting from notions of ‘drought-as-crisis’ towards acknowledging the variable availability of water and that multi-year droughts should not be unexpected, and may even become more frequent. Action should also be taken to revalue the farming enterprise as critical to our environmental, economic and cultural well-being and there was also strong consensus that the value of water should be recognised in a more meaningful way (i.e. not just in economic terms). Finally, across the diverse stakeholders involved in the research, one point was consistently reiterated: that ‘it's not just drought’. Exacerbating the issues of climate impacts on water security and supply is the complexity of the agriculture industry, global economics (in particular global markets and the recent/ongoing global financial crisis), and demographic changes (decreasing and ageing populations) which are currently occurring across most rural communities. The social and economic issues facing rural communities are not just a product of drought or climate change – to understand them as such would underestimate the extent of the problems and inhibit the ability to coordinate the holistic, cross-agency approach needed for successful climate change adaptation in rural communities.  相似文献   

15.
This paper estimates changes in thepotential damage of flood events caused by increasesof CO2 concentration in the atmosphere. It ispresented in two parts: 1. the modelling of floodfrequency and magnitude under global warming andassociated rainfall intensities and 2. the use ofgreenhouse flood data to assess changes in thevulnerability of flood prone urban areas, expressingthese in terms of direct losses.Three case studies were selected: theHawkesbury–Nepean corridor, the Queanbeyan and UpperParramatta Rivers. All three catchments are located insoutheastern Australia, near Sydney and Canberra.These were chosen because each had detailed buildingdata bases available and the localities are situatedon rivers that vary in catchment size andcharacteristics. All fall within a region that willexperience similar climate change under the availablegreenhouse scenarios. The GCMs' slab model scenariosof climate change in 2030 and 2070 will cause onlyminor changes to urban flood damage but the doubleCO2 scenarios estimated using the StochasticWeather Generator technique will lead to significantincreases in building damage.For all the case studies, the hydrological modellingindicates that there will be increases in themagnitude and frequency of flood events under thedouble CO2 conditions although these vary fromplace to place. However, the overall pattern of changeis that for the Upper Parramatta River the 1 in 100-year flood under currentconditions becomes the 1 in44-year event, the 1 in 35-year flood for theHawkesbury–Nepean and the 1 in 10 for Queanbeyan andCanberra. This indicates the importance of usingrainfall-runoff modelling in order to estimate changesin flood frequencies in catchments with differentphysical characteristics.  相似文献   

16.
Growing attention to the impacts of climate change around the world has been accompanied by the profusion of discourses about the lives, livelihoods, and geographies that are “viable” and those that are not in the time of climate change. These discourses of viability often invoke concrete physical limits and tipping points suggesting a transcendent natural order. Conversely, I demonstrate how viability is co-produced through political economic structures that exercise power at multiple scales in shaping the environment and understandings of how it is changing. I describe three dialectics of this co-production: epistemic/material (between ideas about viability and their biophysical and political economic conditions), epistemic/normative (between how the world is understood to be and ideas about how we should live in it), and inter-scalar (between geographic scales, where action at one scale shapes both ecologies and understandings of possible action at another). Each of these dialectics shapes the knowledge regimes that govern the ambiguous social and biophysical process of disappearance and foreclosure of livelihood possibilities in the time of climate change. I examine these discourses of viability through narratives of unviable agrarian livelihoods in coastal Bangladesh, as a lens through which to examine the dialectics of viability more broadly. I situate these discourses concretely in relation to an analysis of interdisciplinary social and natural scientific research on ecological and agrarian viability in coastal Bangladesh now and in the future. Across a broad interdisciplinary spectrum, I find that scientific attention to political economy shapes the politics of possibility. Finally, I demonstrate how discourses of viability limit alternative possible economic and ecological futures. I do this through a concrete examination of the co-production of viable agrarian futures within communities in coastal Bangladesh. These alternative visions indicate that the viability of agriculture is shaped by historical and ongoing decisions in the present about cultivation, water management, and development intervention.  相似文献   

17.
Indigenous Australians’ knowledge of weather and climate   总被引:1,自引:1,他引:0  
Although the last 200 years of colonisation has brought radical changes in economic and governance structures for thousands of Aboriginal and Torres Strait Islanders living in remote areas of northern Australia, many of these Indigenous people still rely upon, and live closely connected to, their natural environment. Over millennia, living ‘on country’, many of these communities have developed a sophisticated appreciation of their local ecosystems and the climatic patterns associated with the changes in them. Some of this knowledge is recorded in their oral history passed down through generations, documented in seasonal weather calendars in local languages and, to a limited degree, transcribed and translated into English. This knowledge is still highly valued by these communities today, as it is used to direct hunting, fishing and planting as well as to inform many seasonally dependant cultural events. In recent years, local observations have been recognised by non-Indigenous scientists as a vital source of environmental data where few historic records exist. Similar to the way that phenological observations in the UK and US provide baseline information on past climates, this paper suggests that Indigenous observations of seasonal change have the potential to fill gaps in climate data for tropical northern Australia, and could also serve to inform culturally appropriate adaptation strategies. One method of recording recent direct and indirect climate and weather observations for the Torres Strait Islands is documented in this paper to demonstrate the currency of local observations of climate and its variability. The paper concludes that a comprehensive, participatory programme to record Aboriginal and Torres Strait Islander knowledge of past climate patterns, and recent observations of change, would be timely and valuable for the communities themselves, as well as contributing to a greater understanding of regional climate change that would be useful for the wider Australian population.  相似文献   

18.
Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to ?14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.  相似文献   

19.
Much of southeast Australia has experienced rainfall substantially below the long-term average since 1997. This protracted drought is particularly noticeable in those parts of South Australia and Victoria which experience a winter (May through October) rainfall peak. For the most part, the recent meteorological drought has affected the first half of the rainfall season May–June–July (MJJ), while rainfall during the second half August–September–October (ASO) has been much closer to the long term average. The recent multi-year drought is without precedent in the instrumental record, and is qualitatively similar to the abrupt decline in rainfall which was observed in the southwest of Western Australia in the 1960 and 1970s. Using a statistical downscaling technique, the rainfall decline is linked to observed changes in large-scale atmospheric fields (mean sea level pressure and precipitable water). This technique is able to reproduce the statistical properties of rainfall in southeast Australia, including the interannual variability and longer time-scale changes. This has revealed that the rainfall recent decline may be explained by a shift to higher pressures and lower atmospheric precipitable water in the region. To explore the likely future evolution of rainfall in southeast Australia under human induced climate change, the same statistical downscaling technique is applied to five climate models forced with increasing greenhouse gas concentrations. This reveals that average rainfall in the region is likely to decline in the future as greenhouse gas concentrations increase, with the greatest decline occurring during the first half of winter. Projected declines vary amongst models but are generally smaller than the recent early winter rainfall deficits. In contrast, the rainfall decline in late winter–spring is larger in future projections than the recent rainfall deficits have been. We illustrate the consequences of the observed and projected rainfall declines on water supply to the major city of Melbourne, using a simple rainfall run-off relationship. This suggests that the water resources may be dramatically affected by future climate change, with percentage reductions approximately twice as large as corresponding changes in rainfall.  相似文献   

20.
Sea-level rise and extreme events have the potential to significantly impact coastal energy infrastructure through flooding and erosion. Disruptions to supply, transportation and storage of energy have global ramifications and potential contamination of the natural environment. On a European scale, there is limited information about energy facilities and their strategic plans for adapting to climate change. Using a Geographical Information System this paper assesses coastal energy infrastructure, comprising (1) oil/gas/LNG/tanker terminals and (2) nuclear power stations. It discusses planning and adaptation for sea-level rise and extreme events. Results indicate 158 major oil/gas/LNG/tanker terminals in the European coastal zone, with 40 % located on the North Sea coast. There are 71 operating nuclear reactors on the coast (37 % of the total of European coastal countries), with further locations planned in the Black, Mediterranean and Baltic Seas. The UK has three times more coastal energy facilities than any other country. Many north-west European countries who have a high reliance on coastal energy infrastructure have a high awareness of sea-level rise and plan for future change. With long design lives of energy facilities, anticipating short, medium and long-term environmental and climatic change is crucial in the design, future monitoring and maintenance of facilities. Adaptation of coastal infrastructure is of international importance, so will be an ongoing important issue throughout the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号