首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
稀有气体同位素的激光探针分析:技术与应用   总被引:4,自引:0,他引:4  
稀有气体同位素的激光探针分析就是利用激光的集束性和高能性来抽提固体样品中的气体 ,然后将气体净化、分离之后送入质谱计测定其含量和同位素组成。该系统主要由显微监视系统、激光发射系统、位移调节系统、样品处理系统和质谱计组成。薄片样品放入真空样品室后 ,利用显微监视系统可以对薄片进行分析和照相 ,可以对小到 30~ 5 0 μm的微小区域定位分析。该方法的优势主要在于 :(1)系统本底非常低 ;(2 )样品用量较少 ;(3)具有很高的空间分辨率 ;(4 )利用“Q开关” ,可以用作微破裂工具 ;(5 )与熔融法相比 ,分析成本较低。它也有不足之处 :(1)系统的投入成本高 ;(2 )各稀有气体的抽提效率不均一 ,需要校正。  相似文献   

2.
稀有气体及宇宙射线暴露(CRE)年龄是研究月球陨石辐射历史的重要媒介,其能够反演陨石所经历的表土层地质过程。本文收集了月球陨石的所有稀有气体浓度、同位素比值和CRE年龄数据,结合前人研究成果进行了对比分析,结果显示,月球陨石角砾岩和非角砾岩稀有气体分别具有"三峰三谷"式和"两峰"式分配模式,且稀有气体浓度从非角砾岩、角砾岩到表土角砾岩逐渐增高;月球陨石不存在太阳高能粒子组分(SEP),但存在太阳风分馏组分(FSW)的可能;月球陨石具有两个不同的CRE年龄,分别为指代地月转移时间的T_(4π)年龄和陨石在表土层受到宇宙射线辐射累积时间的T_(2π)年龄。表土角砾岩和非表土角砾岩的T_(2π)年龄分别约为400~1000 Ma和28~60 Ma,而月球陨石的T_(4π)年龄为(0.4±0.9)Ma;月球陨石在表土层中的埋深为0~7.5 m,其宇宙射线辐射起始年龄普遍大于T_(2π)年龄。未来月球陨石稀有气体研究有望在宇宙成因稀有气体_(2π)产率模型、月球原生稀有气体和紫外激光原位稀有气体测试方法方面取得进展。  相似文献   

3.
岩石矿物学研究发现HED (Howardite-Eucrite-Diogenite)族陨石NWA 12274/12275/12276/12277/12278与NWA 11586可能为成对陨石,但需要稀有气体等证据支持.本次工作对这5块陨石开展了稀有气体、宇宙暴露(CRE)年龄和气体保存年龄研究.结果 发现它们具有相一致的稀有气体同位素比值和CRE年龄,表明NWA系列陨石互为降落成对陨石;陨石CRE年龄[(36.2±3.7)Ma]与灶神星主要溅射事件/时期年龄(35.0~42.5 Ma)一致,表明它们可能在约36 Ma前从灶神星或Ⅴ型小行星溅离;陨石的U、Th-4 He(T4)及40K-40Ar(T40)气体保存年龄分别为0.3~1.3 Ga和2.8~3.4 Ga,显示这些陨石不同程度受到了后期热事件的影响;该流星体进入大气层的初始半径约为12.2 em,在穿越大气层期间质量损失了约56%.  相似文献   

4.
Zn同位素分析方法及其地质应用   总被引:1,自引:0,他引:1  
介绍了Zn同位素组成的表示方法及其化学分离与质谱测定方法,论述了Zn同位素在陨石、沉积物和沉积岩、火成岩、矿床和海水以及生物样品中的组成特征,以及生物有机作用、物理-化学作用对Zn同位素分馏的影响,阐述了Zn同位素在陨石和宇宙化学、古海洋学、全球气候变化研究中的应用现状与前景.  相似文献   

5.
近年来,在线汞蒸汽进样系统(Online Mercury Vapor Generation System)结合多接收等离子体质谱技术(MC-ICP-MS)已经可以实现汞同位素的高精度分析,然而对于汞含量较低的陨石样品,传统的消解方法难以对其进行预富集以满足同位素测试的要求,应用其他有效的陨石样品预富集方法是解决这一问题的关键。本文介绍的管式马弗炉加热的方法可实现陨石汞的有效预富集,使低含量的陨石样品实现同位素测定,此方法对陨石汞的回收率达到(96.9±6.6)%,具有较高的回收水平,可以满足同位素测试的需求,并在该方法的基础上细化了几个关键问题,包括:陨石样品贮存的温度条件(70℃),样品粒度对回收率的影响等。  相似文献   

6.
Helix SFT惰性气体质谱仪分析矿物包裹体中氦同位素组成   总被引:3,自引:0,他引:3  
李军杰  李剑  刘汉彬  张佳  金贵善  张建锋  韩娟 《地质学报》2015,89(10):1826-1831
氦同位素组成在地球大气圈、地壳及地幔各圈层具有不同的元素丰度和同位素比值,变化范围达数个量级,而且氦作为惰性气体中质量最轻的元素,其稳定性好,迁移能力强,因此将其同位素作为地质过程和物质来源的天然示踪剂倍受重视,被广泛地应用于地学研究的各个领域,而能否对于岩石样品中氦同位素组成进行准确分析,成为了氦同位素作为示踪剂的一个关键问题。本文利用Helix SFT惰性气体质谱仪对岩石矿物包裹体内的氦同位素组成测定方法进行了研究,建立了样品的压碎及气体提取纯化装置,通过进一定体积的标准氦气,计算出仪器的灵敏度,在此基础上对整套系统的静态本底进行了测定。对仪器本身的离子倍增器的接收效率进行了探讨,使其可以准确对3 He进行准确测定。以大气中氦同位素为标准并进行多次测定,获得了氦同位素测量的质量歧视校正因子。通过对实际样品黄铁矿包裹体中氦同位素组成的测定,获得了稳定性很好的同位素比值数据,其精度可达99%。通过建立合理的压碎装置,利用该仪器对氦同位素组成分析的独特优势,可以满足对于岩石矿物包裹体中氦同位素组成的精确测定,满足其在地质科研领域的应用研究需要,进而对基础科学研究起到支撑作用。  相似文献   

7.
天然气中稀有气体同位素的分析技术   总被引:9,自引:0,他引:9  
孙明良 《沉积学报》2001,19(2):271-272
在天然气稀有气体同位素分析技术方面,目前国内存在着主机辅助设备不足和检测项目较少等急需解决的问题,为此,本文建立了高真空、低漏率和低本底的天然气进样系统,成功地解决了实验室分析过程中空气Ar对天然气样品Ar的污染,获得了天然气中40 Ar/ 36Ar的准确值,新测比值较国内外已发表的40 Ar/ 36Ar值普遍高,二者差值的大小与天然气中Ar的含量密切相关。同时,应用自制的液氮调温冷阱实现了Ar与Kr+Xe的粗分离和天然气Kr与Xe同位素组成的检测.  相似文献   

8.
胡志中  杨波  杜谷  任静  王冠 《岩矿测试》2012,31(1):24-28
(U-Th)/He定年是一种有效的低温热年代学定年技术,现已被广泛应用于地质研究的各个领域,而矿物中4He同位素的有效提取和含量准确测定是该技术的关键。磷灰石和锆石是(U-Th)/He定年最常用的矿物,其4He提取条件及铀钍含量测定方法都较为成熟;而其他矿物(如磁铁矿、橄榄石、针铁矿、石榴子石等)的研究则相对较少。文章介绍了当前国内外(U-Th)/He研究中采用的4He同位素提取方法———真空炉加热法和激光加热法,激光加热法因具有低4He背景值和耗时短的优点而成为主要的提取方法。以磷灰石样品测试为例,介绍了成都地质矿产研究所建立的采用激光加热法和四极杆质谱提取4He同位素及其含量测量过程、含量计算和校正方法。指出未来(U-Th)/He测试技术除继续改进现有分析方法外,应加强对更多不同矿物的测试研究。  相似文献   

9.
铀矿床样品中^239Pu的测定及应用   总被引:1,自引:0,他引:1  
郭起凤  汪苓 《铀矿地质》1994,10(1):55-60
本文研究了铀矿床样品中(239)Pu的测定方法。其步骤包括:硝酸氢氟酸混合酸溶样的方法;三正辛胺-二甲苯-102白色担体反相色层提取和纯化钚的方法;电沉积制备α源的方法;以(239)Pu为示踪同位素,低本底,高灵敏度,高分辨率的α谱测量(239)Pu的方法。本法简便快速,选择性好,可以从组分复杂的大量铀矿岩石及围岩中提取出痕量(239)Pu。测量方法准确可靠,全流程本底为4.35×10(-14)g(239)Pu。经沥青铀矿样品考验结果极为满意,并为连山关铀矿床样品提供了可靠数据,为研究(239)Pu在铀矿床中的地球化学行为及迁移规律奠定了基础。  相似文献   

10.
稀有气体质谱仪准确测量氩同位素组成是Ar-Ar法高精度定年的前提,目前测量氩同位素主要应用单接收或多接收质谱仪,其中多接收稀有气体质谱仪在数据准确性和重现性等方面具备优势。本文研究了Argus多接收稀有气体质谱仪应用于测量Ar同位素过程中一些主要因素对测量结果准确度和重现性的影响情况。结果表明,整套系统在静态模式下不同时间段的本底值极低,不影响测定;仪器电子倍增器的接收效率优于99.67%,可显著提高Ar低含量样品测量精度,当40Ar信号强度低于0.5 V时,用电子倍增器测量40Ar/36Ar组成的标准偏差仅为0.11%,而用法拉第杯测量40Ar/36Ar组成的标准偏差为0.53%;仪器的质量歧视效应可通过多次循环测量并采用指数定律获得稳定的质量歧视校正因子(此值相对标准偏差为0.0434%),实现对Ar同位素组成的准确校正。本文以测量空气中的氩同位素组成为例,证明了Argus多接收稀有气体质谱仪的测试效率比单个接收器跳峰方式的测试效率高,测试结果更精确,因此适合年轻样品或含钾量极低的样品的Ar-Ar高精度定年工作。  相似文献   

11.
A laser microprobe capable of analysing nitrogen and noble gases in individual grains with masses less than a milligram is described. It can be used in both continuous wave (CW) mode, useful for stepwise heating of an individual grain, as well as in pulsed mode, useful for ablating material from a small selected area of a sample, for gas extraction. We could achieve low blanks (in ccSTP units) for 4He(4.8 x 10{-12}),22Ne(1.0 x 10{-12}),36Ar(1.0 x10 -13),84Kr(2.9 x 10{-14}),132 Xe(2.6 x 10{-14}), and N (87 pg), using this system. Preliminary data for individual chondrules from the Dhajala meteorite show that noble gases and nitrogen from grains as small as 170 microgram can be analysed using the present laser microprobe setup. The amount of trapped neon in Dhajala chondrules is very small, and nitrogen in the chondrules is isotopically heavier as compared to the bulk meteorite.  相似文献   

12.
Based on the analysis of data in [1, 2] on the concentrations of noble gases and the cosmic ray exposure age (CREA) of chromite grains in fossil meteorites, it was demonstrated in [3] that the distributions of gas concentrations and cosmic ray exposure ages can be explained under the assumption of the fall of a single meteorite in the form of a meteorite shower in southern Sweden less than 0.2 Ma after the catastrophic destruction of the parental body (asteroid) of L chondrites in space at approximately 470 Ma. This assumption differs from the conclusion in [1, 2, 4] about the long-lasting (for 1–2 Ma) delivery of L chondrites to the Earth, with the intensity of the flux of this material one to two orders of magnitude greater than now. The analysis of newly obtained data on samples from the Brunflo fossil meteorite [5] corroborates the hypothesis of a meteorite shower produced by the fall of a single meteorite. The possible reason for the detected correlations between the cosmic ray exposure ages of meteorites and the masses of the samples with the 20Ne concentrations can be the occurrence of Ne of anomalous isotopic composition in the meteorites.  相似文献   

13.
The isotopic composition of noble gases was investigated in the Dhofar 007 meteorite. Petrographic and mineralogical observations suggested that it is a brecciated cumulate eucrite with high contents of siderophile elements. The concentrations of noble gases in Dhofar 007 are identical to those of other eucrites. Its cosmic ray exposure age was estimated as 11.8 ± 0.8 Ma, which coincides with a maximum on the histogram of comic ray exposure ages of eucrite meteorites. It can be supposed that, similar to other eucrites, Dhofar 007 was ejected from the surface of their parent body (presumably, asteroid Vesta) about 12.0 Ma ago. The crystallization age of the Dhofar 007 eucrite was estimated from the ratio of plutonogenic Xe to Nd as 4476 ± 22 Ma. The potassium-argon age is much younger, 3.7–4.1 Ga, which indicates partial loss of radiogenic argon during the history of the meteorite, most likely related to impact metamorphic events.  相似文献   

14.
The Sulagiri meteorite fell in India on 12 September 2008,LL6 chondrite class is the largest among all the Indian meteorites.Isotopic compositions of noble gases(He,Ne,Ar,Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed.Low cosmogenic(~(22)Ne/~(21)Ne)_c ratio is consistent with irradiation in a large body.Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure(CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of IX chondrites.Radiogenic ~4He and ~(40)Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and4.56 Ca,indicating the loss of He from the meteorite.Xenon and krypton are mixture of Q and spallogenic components.  相似文献   

15.
Noble gases are not rare in the Universe, but they are rare in rocks. As a consequence, it has been possible to identify in detailed analyses a variety of components whose existence is barely visible in other elements: radiogenic and cosmogenic gases produced in situ, as well as a variety of “trapped” components – both of solar (solar wind) origin and the “planetary” noble gases. The latter are most abundant in the most primitive chondritic meteorites and are distinct in elemental and isotopic abundance patterns from planetary noble gases sensu strictu, e.g., those in the atmospheres of Earth and Mars, having in common only the strong relative depletion of light relative to heavy elements when compared to the solar abundance pattern. In themselves, the “planetary” noble gases in meteorites constitute again a complex mixture of components including such hosted by pre-solar stardust grains.The pre-solar components bear witness of the processes of nucleosynthesis in stars. In particular, krypton and xenon isotopes in pre-solar silicon carbide and graphite grains keep a record of physical conditions of the slow-neutron capture process (s-process) in asymptotic giant branch (AGB) stars. The more abundant Kr and Xe in the nanodiamonds, on the other hand, show a more enigmatic pattern, which, however, may be related to variants of the other two processes of heavy element nucleosynthesis, the rapid neutron capture process (r-process) and the p-process producing the proton-rich isotopes.“Q-type” noble gases of probably “local” origin dominate the inventory of the heavy noble gases (Ar, Kr, Xe). They are hosted by “phase Q”, a still ill-characterized carbonaceous phase that is concentrated in the acid-insoluble residue left after digestion of the main meteorite minerals in HF and HCl acids. While negligible in planetary-gas-rich primitive meteorites, the fraction carried by “solubles” becomes more important in chondrites of higher petrologic type. While apparently isotopically similar to Q gas, the elemental abundances are somewhat less fractionated relative to the solar pattern, and they deserve further study. Similar “planetary” gases occur in high abundance in the ureilite achondrites, while small amounts of Q-type noble gases may be present in some other achondrites. A “subsolar” component, possibly a mixture of Q and solar noble gases, is found in enstatite chondrites. While no definite mechanism has been identified for the introduction of the planetary noble gases into their meteoritic host phases, there are strong indications that ion implantation has played a major role.The planetary noble gases are concentrated in the meteorite matrix. Ca-Al-rich inclusions (CAIs) are largely planetary-gas-free, however, some trapped gases have been found in chondrules. Micrometeorites (MMs) and interplanetary dust particles (IDPs) often contain abundant solar wind He and Ne, but they are challenging objects for the analysis of the heavier noble gases that are characteristic for the planetary component. The few existing data for Xe point to a Q-like isotopic composition. Isotopically Q-Kr and Q-Xe show a mass dependent fractionation relative to solar wind, with small radiogenic/nuclear additions. They may be closer to “bulk solar” Kr and Xe than Kr and Xe in the solar wind, but for a firm conclusion it is necessary to gain a better understanding of mass fractionation during solar wind acceleration.  相似文献   

16.
陨石原始型惰性气体的研究进展——Q气及其携带物特征   总被引:1,自引:1,他引:0  
陨石中的原始型惰性气体是在陨石形成前或陨石形成期间,组成陨石的物质通过吸附、溶解等方式将原始太阳星云中的惰性气体保留在陨石中形成的。实验研究发现,球粒陨石中的原始型惰性气体浓集中一种称为Q相的物质中,因此在原始型惰性气体中占绝对优势的组分被称为Q气或P1气。介绍了陨石原型惰性气体概念的由来、Q相的发现经过、Q相的成分和在球粒陨石中的存在部位以及Q气的元素丰度和同位素组成。并根据不同类型损石中Q气的分配情况,对其成因意义进行了讨论。  相似文献   

17.
Two examined fragments of the Kaidun meteorite principally differ in the concentrations of isotopes of noble gases and are very heterogeneous in terms of the isotopic composition of the gases. Because these fragments belong to two basically different types of meteoritic material (EL and CR chondrites), these characteristics of noble gases could be caused by differences in the cosmochemical histories of the fragments before their incorporation into the parent asteroid. As follows from the escape kinetics of all gases, atoms of trapped and cosmogenic noble gases are contained mostly in the structures of two carrier minerals in the samples. The concentrations and proportions of the concentrations of various primary noble gases in the examined fragments of Kaidun are obviously unusual compared to data on most currently known EL and CR meteorites. In contrast to EL and CR meteorites, which contain the primary component of mostly solar provenance, the elemental ratios and isotopic composition of Ne and He in the fragments of Kaidun correspond to those typical of the primary components of A and Q planetary gases. This testifies to the unique conditions under which the bulk of the noble gases were trapped from the early protoplanetary nebula. The apparent cosmic-ray age of both of the Kaidun fragments calculated based on cosmogenic isotopes from 3He to 126Xe varies from 0.027 to 246 Ma as a result of the escape of much cosmogenic isotopes at relatively low temperatures. The extrapolated cosmic-ray age of the Kaidun meteorite, calculated from the concentrations of cosmogenic isotopes of noble gases, is as old as a few billion years, which suggests that the material of the Kaidun meteorite could be irradiated for billions of years when residing in an unusual parent body.  相似文献   

18.
稀有气体同位素测试技术及其在矿床学研究中的应用   总被引:1,自引:0,他引:1  
段超  刘锋  韩丹  李延河 《地质学报》2016,90(8):1908-1921
稀有气体包含He、Ne、Ar、Kr、Xe、Rn六种元素,由于其化学性质十分的稳定,一般不参与各种化学反应过程。其在地球不同圈层及地外物质中的丰度和同位素组成差别巨大,是地球科学研究的重要示踪剂。稀有气体同位素组成的测试方法主要有分阶段加热熔融、真空压碎、激光微区熔蚀等气体采集方式,获得的气体经多级纯化后在静态稀有气体同位素质谱中进行测试。在矿床学研究中,作为灵敏示踪剂的稀有气体同位素大多用于判别成矿物质、成矿流体的来源,特别是幔源物质的贡献大小及壳幔相互作用与成矿的关系,用于揭示矿床在成矿各阶段(期)中的物质和流体源区差异,用以追踪和揭示成矿流体的演化、反演成矿过程并在一定程度上指示成矿流体在成矿过程中的行为。稀有气体同位素为精细成矿作用研究、不同矿种成矿作用差异分析、探寻大规模成矿作用提供了重要的科研手段。  相似文献   

19.
Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled “phase Q.” Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for Ar, Kr, and Xe at low pressures (10−4 mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors.Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号